Differentiability of convex measures
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 862-871

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider convex measures on finite-dimensional spaces. We prove the differentiability of convex measures in the Skorokhod sense (and under some natural conditions, in the Fomin sense also). Simultaneously we give some additional results on differentiability of convex measures.
@article{MZM_1995_58_6_a5,
     author = {E. P. Krugova},
     title = {Differentiability of convex measures},
     journal = {Matemati\v{c}eskie zametki},
     pages = {862--871},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/}
}
TY  - JOUR
AU  - E. P. Krugova
TI  - Differentiability of convex measures
JO  - Matematičeskie zametki
PY  - 1995
SP  - 862
EP  - 871
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/
LA  - ru
ID  - MZM_1995_58_6_a5
ER  - 
%0 Journal Article
%A E. P. Krugova
%T Differentiability of convex measures
%J Matematičeskie zametki
%D 1995
%P 862-871
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/
%G ru
%F MZM_1995_58_6_a5
E. P. Krugova. Differentiability of convex measures. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 862-871. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/