Differentiability of convex measures
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 862-871.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider convex measures on finite-dimensional spaces. We prove the differentiability of convex measures in the Skorokhod sense (and under some natural conditions, in the Fomin sense also). Simultaneously we give some additional results on differentiability of convex measures.
@article{MZM_1995_58_6_a5,
     author = {E. P. Krugova},
     title = {Differentiability of convex measures},
     journal = {Matemati\v{c}eskie zametki},
     pages = {862--871},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/}
}
TY  - JOUR
AU  - E. P. Krugova
TI  - Differentiability of convex measures
JO  - Matematičeskie zametki
PY  - 1995
SP  - 862
EP  - 871
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/
LA  - ru
ID  - MZM_1995_58_6_a5
ER  - 
%0 Journal Article
%A E. P. Krugova
%T Differentiability of convex measures
%J Matematičeskie zametki
%D 1995
%P 862-871
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/
%G ru
%F MZM_1995_58_6_a5
E. P. Krugova. Differentiability of convex measures. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 862-871. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/

[1] Albeverio S., Kusuoka S., “Maximality of infinite dimensional Dirichlet form Hoegh-Krohn's model of quantum fields”, Memorial volume for R. Hoegh-Krohn, eds. S. Albeverio and als., Cambridge University press, Cambridge, 1991

[2] Antonjuk A. V., Kondratiev Y. G., Log-concave smooth measures on Hilbert spaces and some properties of corresponding operators, BiBos Preprint, 1991

[3] Borell C., “Convex measures on locally convex spaces”, Ark. Mat., 12:2 (1974), 239–252 | DOI | MR | Zbl

[4] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[5] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[6] Brascamp H. J., Lieb E. H., “On extension of the Brunn–Minkovski and Prekopa–Leinder theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR | Zbl

[7] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, UMN, 45:3 (1990), 3–83 | MR | Zbl

[8] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | Zbl

[9] Aleksandrov A. D., “Suschestvovanie pochti vezde vtorogo differentsiala vypukloi funktsii i nekotorye svyazannye s nim svoistva vypuklykh poverkhnostei”, Uch. zapiski LGU. Ser. matem., 1936, no. 6, 3–35