Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_6_a5, author = {E. P. Krugova}, title = {Differentiability of convex measures}, journal = {Matemati\v{c}eskie zametki}, pages = {862--871}, publisher = {mathdoc}, volume = {58}, number = {6}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/} }
E. P. Krugova. Differentiability of convex measures. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 862-871. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a5/
[1] Albeverio S., Kusuoka S., “Maximality of infinite dimensional Dirichlet form Hoegh-Krohn's model of quantum fields”, Memorial volume for R. Hoegh-Krohn, eds. S. Albeverio and als., Cambridge University press, Cambridge, 1991
[2] Antonjuk A. V., Kondratiev Y. G., Log-concave smooth measures on Hilbert spaces and some properties of corresponding operators, BiBos Preprint, 1991
[3] Borell C., “Convex measures on locally convex spaces”, Ark. Mat., 12:2 (1974), 239–252 | DOI | MR | Zbl
[4] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973
[5] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[6] Brascamp H. J., Lieb E. H., “On extension of the Brunn–Minkovski and Prekopa–Leinder theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR | Zbl
[7] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, UMN, 45:3 (1990), 3–83 | MR | Zbl
[8] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | Zbl
[9] Aleksandrov A. D., “Suschestvovanie pochti vezde vtorogo differentsiala vypukloi funktsii i nekotorye svyazannye s nim svoistva vypuklykh poverkhnostei”, Uch. zapiski LGU. Ser. matem., 1936, no. 6, 3–35