Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_6_a0, author = {V. V. Belov and M. F. Kondrat'eva}, title = {The {Hamiltonian} structure of equations for quantum averages in systems with matrix {Hamiltonians}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--817}, publisher = {mathdoc}, volume = {58}, number = {6}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/} }
TY - JOUR AU - V. V. Belov AU - M. F. Kondrat'eva TI - The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians JO - Matematičeskie zametki PY - 1995 SP - 803 EP - 817 VL - 58 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/ LA - ru ID - MZM_1995_58_6_a0 ER -
V. V. Belov; M. F. Kondrat'eva. The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 803-817. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/
[1] Fon Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964
[2] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983
[3] Belov V. V., Kondrateva M. F., “Gamiltonovy sistemy uravnenii dlya kvantovykh srednikh”, Matem. zametki, 56:6 (1994), 27–39 | MR | Zbl
[4] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl
[5] Kondrateva M. F., Kvaziklassicheskie traektorno-kogerentnye sostoyaniya i evolyutsiya kvantovykh srednikh, Dis. ... kand. fiz.-matem. nauk, TGU, Tomsk, 1993
[6] Bagrov V. G., Belov V. V., Kondrateva M. F., “Kvaziklassicheskoe priblizhenie v kvantovoi mekhanike. Novyi podkhod”, TMF, 98:1 (1994), 48–55 | MR | Zbl
[7] Bagrov V. G., Belov V. V., Kondratyeva M. F., Rogova A. M., Trifonov A. Yu., “The quasiclassical localization of the states and new approach to quasiclassical approximation in quantum mechanics”, Proceedings 5th and 6th Lomonosov Conferences on Elementary Particles Physics “Particle physics, gauge fields and astrophysics”, ed. A. Studenikin, Accademia Nazionale dei Lincei, Rome, 1994
[8] Bagrov V. G., Belov V. V., Kondratyeva M. F., Rogova A. M., Trifonov A. Yu., “A new formulation of quasi-classical approximation in quantum mechanics”, J. Moscow Phys. Soc., 3 (1993), 1–12 | MR
[9] Bagrov V. G., Belov V. V., Trifonov A. Yu., “Novaya metodika dlya kvaziklassicheskogo priblizheniya v kvantovoi mekhanike”, Trudy mezhdunarodnoi konferentsii “Geometrizatsiya fiziki”, Remark, Kazan, 1994, 66–77
[10] Bagrov V. G., Belov V. V., Rogova A. M., “Kvaziklassicheski sosredotochennye sostoyaniya v kvantovoi mekhanike”, TMF, 90:1 (1992), 84–94 | MR
[11] Bagrov V. G., Belov V. V., Rogova A. M., Trifonov A. Yu., “The quasiclassical localization of the states and obtaining of classical equations of motion from quantum theory”, Modern Phys. Lett., 7:26 (1993), 1667–1675 | DOI
[12] Bagrov V. G., Belov V. V., Trifonov A. Yu., Vysshie priblizheniya dlya kvaziklassicheskikh traektorno-kogerentnykh sostoyanii operatorov Shredingera i Diraka v proizvolnom elektromagnitnom pole, Tomskii nauchnyi tsentr SO AN SSSR, Tomsk, 1989
[13] Kucherenko V. V., “Asimptoticheskie resheniya sistemy $A(x,-i\hbar \partial _x)u=0$ pri $\hbar \to 0$ v sluchae kharakteristik peremennoi kratnosti”, Izv. AN SSSR. Ser. matem., 38:3 (1974), 625–662 | MR | Zbl
[14] Kucherenko V. V., Osipov Yu. V., “Asimptotika zadachi Koshi dlya nestrogo giperbolicheskikh uravnenii”, Matem. sb., 120:1 (1983), 84–111 | MR | Zbl
[15] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl
[16] Belov V. V., Kvaziklassicheskii predel uravnenii dvizheniya kvantovykh srednikh dlya nerelyativistskikh sistem s kalibrovochnymi polyami, Preprint No. 58, SO AN SSSR, Tomsk, 1989, 30 pp.
[17] Belov V. V., Kvaziklassicheskoe traektorno-kogerentnoe priblizhenie v kvantovoi teorii, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 1991
[18] Belov V. V., Maslov V. P., “Kvaziklassicheskie traektorno-kogerentnye sostoyaniya v kvantovoi mekhanike s kalibrovochnymi polyami”, DAN SSSR, 311:4 (1990), 849–854 | MR
[19] Belov V. V., Kondrateva M. F., ““Klassicheskie” uravneniya dvizheniya v kvantovoi mekhanike s kalibrovochnymi polyami”, TMF, 92:1 (1992), 41–61 | MR
[20] Shiff L., Kvantovaya mekhanika, IL, M., 1959
[21] Khuang K., Kvarki, leptony i kalibrovochnye polya, Mir, M., 1985
[22] Frenkel Ya. I., Sobranie izbrannykh trudov. T. 2. Nauchnye stati, Izd-vo AN SSSR, M.–L., 1958, S. 460–476
[23] Wong S. K., “Fields and particle equation for the classical Yang–Mills field and particles with isotopic spin”, Nuovo Cim., A65:4 (1970), 689–694 | DOI