The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 803-817.

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite system of ordinary differential equations for $\bar x$, $\bar p$, and for averages of a set of operators is derived for quantum-mechanical problems with a $(K\times K)$ matrix Hamiltonian $\mathscr H(\hat x,\hat p)$, $x\in\mathbb R^N$. The set of operators is chosen to be basis in the space $\mathrm{Mat}_K\mathbb C\otimes U(\mathscr W_N)$, where $U(\mathscr W_N)$ is the universal enveloping algebra of the Heisenberg–Weyl algebra $\mathscr W_N$, generated by the time-dependent operators $\hat I$, $\hat x-\bar x(t)\cdot\hat I$, $\hat p-\bar p(t)\cdot\hat I$, where $\hat I$ is the identity operator and $\bar x$, $\bar p$ are the averages of the position and momentum operators. The system in question can be written in Hamiltonian form; the corresponding Poisson bracket is degenerate and is equal to the sum of the standard bracket on $\mathbb R^{2N}$ with respect to the variables $(\bar x,\bar p)$ and the generalized Dirac bracket with respect to the other variables. The possibility of obtaining finite-dimensional approximations to the infinite-dimensional system in the semiclassical limit $\hbar\to0$ is investigated.
@article{MZM_1995_58_6_a0,
     author = {V. V. Belov and M. F. Kondrat'eva},
     title = {The {Hamiltonian} structure of equations for quantum averages in systems with matrix {Hamiltonians}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--817},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - M. F. Kondrat'eva
TI  - The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
JO  - Matematičeskie zametki
PY  - 1995
SP  - 803
EP  - 817
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/
LA  - ru
ID  - MZM_1995_58_6_a0
ER  - 
%0 Journal Article
%A V. V. Belov
%A M. F. Kondrat'eva
%T The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
%J Matematičeskie zametki
%D 1995
%P 803-817
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/
%G ru
%F MZM_1995_58_6_a0
V. V. Belov; M. F. Kondrat'eva. The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 803-817. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/

[1] Fon Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964

[2] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983

[3] Belov V. V., Kondrateva M. F., “Gamiltonovy sistemy uravnenii dlya kvantovykh srednikh”, Matem. zametki, 56:6 (1994), 27–39 | MR | Zbl

[4] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl

[5] Kondrateva M. F., Kvaziklassicheskie traektorno-kogerentnye sostoyaniya i evolyutsiya kvantovykh srednikh, Dis. ... kand. fiz.-matem. nauk, TGU, Tomsk, 1993

[6] Bagrov V. G., Belov V. V., Kondrateva M. F., “Kvaziklassicheskoe priblizhenie v kvantovoi mekhanike. Novyi podkhod”, TMF, 98:1 (1994), 48–55 | MR | Zbl

[7] Bagrov V. G., Belov V. V., Kondratyeva M. F., Rogova A. M., Trifonov A. Yu., “The quasiclassical localization of the states and new approach to quasiclassical approximation in quantum mechanics”, Proceedings 5th and 6th Lomonosov Conferences on Elementary Particles Physics “Particle physics, gauge fields and astrophysics”, ed. A. Studenikin, Accademia Nazionale dei Lincei, Rome, 1994

[8] Bagrov V. G., Belov V. V., Kondratyeva M. F., Rogova A. M., Trifonov A. Yu., “A new formulation of quasi-classical approximation in quantum mechanics”, J. Moscow Phys. Soc., 3 (1993), 1–12 | MR

[9] Bagrov V. G., Belov V. V., Trifonov A. Yu., “Novaya metodika dlya kvaziklassicheskogo priblizheniya v kvantovoi mekhanike”, Trudy mezhdunarodnoi konferentsii “Geometrizatsiya fiziki”, Remark, Kazan, 1994, 66–77

[10] Bagrov V. G., Belov V. V., Rogova A. M., “Kvaziklassicheski sosredotochennye sostoyaniya v kvantovoi mekhanike”, TMF, 90:1 (1992), 84–94 | MR

[11] Bagrov V. G., Belov V. V., Rogova A. M., Trifonov A. Yu., “The quasiclassical localization of the states and obtaining of classical equations of motion from quantum theory”, Modern Phys. Lett., 7:26 (1993), 1667–1675 | DOI

[12] Bagrov V. G., Belov V. V., Trifonov A. Yu., Vysshie priblizheniya dlya kvaziklassicheskikh traektorno-kogerentnykh sostoyanii operatorov Shredingera i Diraka v proizvolnom elektromagnitnom pole, Tomskii nauchnyi tsentr SO AN SSSR, Tomsk, 1989

[13] Kucherenko V. V., “Asimptoticheskie resheniya sistemy $A(x,-i\hbar \partial _x)u=0$ pri $\hbar \to 0$ v sluchae kharakteristik peremennoi kratnosti”, Izv. AN SSSR. Ser. matem., 38:3 (1974), 625–662 | MR | Zbl

[14] Kucherenko V. V., Osipov Yu. V., “Asimptotika zadachi Koshi dlya nestrogo giperbolicheskikh uravnenii”, Matem. sb., 120:1 (1983), 84–111 | MR | Zbl

[15] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[16] Belov V. V., Kvaziklassicheskii predel uravnenii dvizheniya kvantovykh srednikh dlya nerelyativistskikh sistem s kalibrovochnymi polyami, Preprint No. 58, SO AN SSSR, Tomsk, 1989, 30 pp.

[17] Belov V. V., Kvaziklassicheskoe traektorno-kogerentnoe priblizhenie v kvantovoi teorii, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 1991

[18] Belov V. V., Maslov V. P., “Kvaziklassicheskie traektorno-kogerentnye sostoyaniya v kvantovoi mekhanike s kalibrovochnymi polyami”, DAN SSSR, 311:4 (1990), 849–854 | MR

[19] Belov V. V., Kondrateva M. F., ““Klassicheskie” uravneniya dvizheniya v kvantovoi mekhanike s kalibrovochnymi polyami”, TMF, 92:1 (1992), 41–61 | MR

[20] Shiff L., Kvantovaya mekhanika, IL, M., 1959

[21] Khuang K., Kvarki, leptony i kalibrovochnye polya, Mir, M., 1985

[22] Frenkel Ya. I., Sobranie izbrannykh trudov. T. 2. Nauchnye stati, Izd-vo AN SSSR, M.–L., 1958, S. 460–476

[23] Wong S. K., “Fields and particle equation for the classical Yang–Mills field and particles with isotopic spin”, Nuovo Cim., A65:4 (1970), 689–694 | DOI