The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 803-817

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite system of ordinary differential equations for $\bar x$, $\bar p$, and for averages of a set of operators is derived for quantum-mechanical problems with a $(K\times K)$ matrix Hamiltonian $\mathscr H(\hat x,\hat p)$, $x\in\mathbb R^N$. The set of operators is chosen to be basis in the space $\mathrm{Mat}_K\mathbb C\otimes U(\mathscr W_N)$, where $U(\mathscr W_N)$ is the universal enveloping algebra of the Heisenberg–Weyl algebra $\mathscr W_N$, generated by the time-dependent operators $\hat I$, $\hat x-\bar x(t)\cdot\hat I$, $\hat p-\bar p(t)\cdot\hat I$, where $\hat I$ is the identity operator and $\bar x$, $\bar p$ are the averages of the position and momentum operators. The system in question can be written in Hamiltonian form; the corresponding Poisson bracket is degenerate and is equal to the sum of the standard bracket on $\mathbb R^{2N}$ with respect to the variables $(\bar x,\bar p)$ and the generalized Dirac bracket with respect to the other variables. The possibility of obtaining finite-dimensional approximations to the infinite-dimensional system in the semiclassical limit $\hbar\to0$ is investigated.
@article{MZM_1995_58_6_a0,
     author = {V. V. Belov and M. F. Kondrat'eva},
     title = {The {Hamiltonian} structure of equations for quantum averages in systems with matrix {Hamiltonians}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--817},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - M. F. Kondrat'eva
TI  - The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
JO  - Matematičeskie zametki
PY  - 1995
SP  - 803
EP  - 817
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/
LA  - ru
ID  - MZM_1995_58_6_a0
ER  - 
%0 Journal Article
%A V. V. Belov
%A M. F. Kondrat'eva
%T The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians
%J Matematičeskie zametki
%D 1995
%P 803-817
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/
%G ru
%F MZM_1995_58_6_a0
V. V. Belov; M. F. Kondrat'eva. The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 803-817. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a0/