Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_5_a2, author = {V. A. Dobrynskii}, title = {Critical sets and unimodal mappings of the square}, journal = {Matemati\v{c}eskie zametki}, pages = {669--680}, publisher = {mathdoc}, volume = {58}, number = {5}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a2/} }
V. A. Dobrynskii. Critical sets and unimodal mappings of the square. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 669-680. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a2/
[1] Mira C., “Complex dynamics in two-dimensional endomorphisms”, Nonlinear Anal. Theor., Methods Appl., 4:6 (1981), 1167–1187 | DOI | MR
[2] Gumowski I., Mira C., Dynamique chaotique. Transformations ponctuelles. Trasition order-desorder, Editions Cepadues, Toulouse, 1980 | Zbl
[3] Li T.-Y., York J. A., “Period three imply chaos”, Amer. Math. Monthly, 28 (1975), 985–992
[4] Alekseev V. M., Simvolicheskaya dinamika, Odinnadtsataya matematicheskaya shkola, In-t matematiki AN USSR, Kiev, 1976
[5] Marotto F. R., “Snap-Back repellers imply chaos in $\mathbb R^n$”, J. Math. Anal. and Appl., 63:1 (1978), 199–223 | DOI | MR | Zbl
[6] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Naukova dumka, Kiev, 1989
[7] Rogers T. D., Marotto F. R., “Perturbations of mappings with periodic repellers”, Nonlinear Anal., Theor., Methods and Appl., 7:1 (1983), 97–100 | DOI | Zbl
[8] Smeil S., “Diffeomorfizmy so mnogimi periodicheskimi tochkami”, Matematika. Sb. perevodov, 11:4 (1967), 88–106
[9] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR