Critical sets and unimodal mappings of the square
Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 669-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lower estimate for the number of different invariant subsets of the set of nonwandering points for a class of unimodal mappings is given. Sufficient conditions for such a mapping to have periodic points of arbitrarily large period are described. The machinery of the appearance of such points may be of very different nature. The existence of mappings with trajectory behavior chaotic in the Li–York sense is established. Conditions for the domain of these trajectories to be arbitrary small are given. Therefore, such trajectories cannot be found by numerical methods.
@article{MZM_1995_58_5_a2,
     author = {V. A. Dobrynskii},
     title = {Critical sets and unimodal mappings of the square},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--680},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a2/}
}
TY  - JOUR
AU  - V. A. Dobrynskii
TI  - Critical sets and unimodal mappings of the square
JO  - Matematičeskie zametki
PY  - 1995
SP  - 669
EP  - 680
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a2/
LA  - ru
ID  - MZM_1995_58_5_a2
ER  - 
%0 Journal Article
%A V. A. Dobrynskii
%T Critical sets and unimodal mappings of the square
%J Matematičeskie zametki
%D 1995
%P 669-680
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a2/
%G ru
%F MZM_1995_58_5_a2
V. A. Dobrynskii. Critical sets and unimodal mappings of the square. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 669-680. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a2/

[1] Mira C., “Complex dynamics in two-dimensional endomorphisms”, Nonlinear Anal. Theor., Methods Appl., 4:6 (1981), 1167–1187 | DOI | MR

[2] Gumowski I., Mira C., Dynamique chaotique. Transformations ponctuelles. Trasition order-desorder, Editions Cepadues, Toulouse, 1980 | Zbl

[3] Li T.-Y., York J. A., “Period three imply chaos”, Amer. Math. Monthly, 28 (1975), 985–992

[4] Alekseev V. M., Simvolicheskaya dinamika, Odinnadtsataya matematicheskaya shkola, In-t matematiki AN USSR, Kiev, 1976

[5] Marotto F. R., “Snap-Back repellers imply chaos in $\mathbb R^n$”, J. Math. Anal. and Appl., 63:1 (1978), 199–223 | DOI | MR | Zbl

[6] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Naukova dumka, Kiev, 1989

[7] Rogers T. D., Marotto F. R., “Perturbations of mappings with periodic repellers”, Nonlinear Anal., Theor., Methods and Appl., 7:1 (1983), 97–100 | DOI | Zbl

[8] Smeil S., “Diffeomorfizmy so mnogimi periodicheskimi tochkami”, Matematika. Sb. perevodov, 11:4 (1967), 88–106

[9] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR