Sufficient conditions for the subexponential property of the convolution of two distributions
Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 778-781

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions on the distributions of two independent nonnegative random variables $X$ and $Y$ are given for the sum $X+Y$ to have a subexponential distribution, i.e., $(1-F^{(2*)}(t))/(1-F(t))\to2$ as $t\to+\infty$, where $F(t)=\mathsf P\{X+Y\le t\}$ and $F^{(2*)}(t)$ is the convolution of $F(t)$ with itself.
@article{MZM_1995_58_5_a11,
     author = {A. L. Yakymiv},
     title = {Sufficient conditions for the subexponential property of the convolution of two distributions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {778--781},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a11/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Sufficient conditions for the subexponential property of the convolution of two distributions
JO  - Matematičeskie zametki
PY  - 1995
SP  - 778
EP  - 781
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a11/
LA  - ru
ID  - MZM_1995_58_5_a11
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Sufficient conditions for the subexponential property of the convolution of two distributions
%J Matematičeskie zametki
%D 1995
%P 778-781
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a11/
%G ru
%F MZM_1995_58_5_a11
A. L. Yakymiv. Sufficient conditions for the subexponential property of the convolution of two distributions. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 778-781. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a11/