@article{MZM_1995_58_5_a11,
author = {A. L. Yakymiv},
title = {Sufficient conditions for the subexponential property of the convolution of two distributions},
journal = {Matemati\v{c}eskie zametki},
pages = {778--781},
year = {1995},
volume = {58},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a11/}
}
A. L. Yakymiv. Sufficient conditions for the subexponential property of the convolution of two distributions. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 778-781. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a11/
[1] Chistyakov V. P., “Teorema o summakh nezavisimykh polozhitelnykh sluchainykh velichin i ee prilozhenie k vetvyaschimsya sluchainym protsessam”, Teor. ver. i ee primen., 9:4 (1964), 710–718 | MR | Zbl
[2] Sgibnev M. S., “Asimptotika bezgranichno delimykh raspredelenii v $R$”, Sib. matem. zh., 31:1 (1990), 135–140 | MR
[3] Chover J., Ney P., Wainger S., “Degeneracy properties of subcritical branching processes”, Ann. Prob., 1 (1973), 663–673 | DOI | MR | Zbl
[4] Teugels J. L., “The class of subexponential distributions”, Ann. Prob., 3 (1975), 1000–1011 | DOI | MR | Zbl
[5] Goldie C. M., “Subexponential distributions and dominated-variation tails”, J. Appl. Prob., 15 (1978), 440–442 | DOI | MR | Zbl
[6] Embrechts P., Goldie C. M., “On closure and factorisation properties of subexponential and related distributions”, J. Austral. Math. Soc., 29 (1980), 243–256 | DOI | MR | Zbl
[7] Cline D. B. H., “Convolution of distributions with exponential and subexponential tails”, J. Austral. Math. Soc., 43 (1987), 347–365 | DOI | MR | Zbl
[8] Kluppelberg C., “Subexponential distributions and integrated tails”, J. Appl. Prob., 25 (1988), 132–141 | DOI | MR
[9] Leslie J. R., “On the non-closure under convolution of the subexponential family”, J. Appl. Prob., 26 (1989), 58–66 | DOI | MR | Zbl
[10] Jakimiv A. L., “Limit theorems for random $A$-permutations”, Proc. 3-rd Petrozavodsk Conf. on Probab. Methods in Discr. Math., 1993, 459–469