Closed orbits and finite approximability with respect to conjugacy of free amalgamated products
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 525-535

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of finite approximability with respect to conjugacy of amalgamated free products by a normal subgroup and prove the following assertions. A) If $G$ is the amalgamated free product $G=G_1*_HG_2$ of polycyclic groups $G_1$ and $G_2$ by a normal subgroup $H$, where $H$ is an almost free Abelian group of rank 2, then $G$ is finitely approximate with respect to conjugacy. B) (i) If $G_1=G_2=L$ is a polycyclic group and $G=G_1*_HG_2$ is the amalgamated product of two copies of the group $L$ by a normal subgroup $H$, then $G$ is finitely approximable with respect to conjugacy. (ii) If $G$ is an amalgamated free product $G=G_1*_HG_2$ of polycyclic groups $G_1$ and $G_2$ by a normal subgroup $H$, where $H$ is central in $G_1$ or $G_2$, then $G$ is finitely approximable with respect to conjugacy.
@article{MZM_1995_58_4_a4,
     author = {P. A. Zalesskii and O. I. Tavgen'},
     title = {Closed orbits and finite approximability with respect to conjugacy of free amalgamated products},
     journal = {Matemati\v{c}eskie zametki},
     pages = {525--535},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a4/}
}
TY  - JOUR
AU  - P. A. Zalesskii
AU  - O. I. Tavgen'
TI  - Closed orbits and finite approximability with respect to conjugacy of free amalgamated products
JO  - Matematičeskie zametki
PY  - 1995
SP  - 525
EP  - 535
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a4/
LA  - ru
ID  - MZM_1995_58_4_a4
ER  - 
%0 Journal Article
%A P. A. Zalesskii
%A O. I. Tavgen'
%T Closed orbits and finite approximability with respect to conjugacy of free amalgamated products
%J Matematičeskie zametki
%D 1995
%P 525-535
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a4/
%G ru
%F MZM_1995_58_4_a4
P. A. Zalesskii; O. I. Tavgen'. Closed orbits and finite approximability with respect to conjugacy of free amalgamated products. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 525-535. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a4/