Closed orbits and finite approximability with respect to conjugacy of free amalgamated products
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 525-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of finite approximability with respect to conjugacy of amalgamated free products by a normal subgroup and prove the following assertions. A) If $G$ is the amalgamated free product $G=G_1*_HG_2$ of polycyclic groups $G_1$ and $G_2$ by a normal subgroup $H$, where $H$ is an almost free Abelian group of rank 2, then $G$ is finitely approximate with respect to conjugacy. B) (i) If $G_1=G_2=L$ is a polycyclic group and $G=G_1*_HG_2$ is the amalgamated product of two copies of the group $L$ by a normal subgroup $H$, then $G$ is finitely approximable with respect to conjugacy. (ii) If $G$ is an amalgamated free product $G=G_1*_HG_2$ of polycyclic groups $G_1$ and $G_2$ by a normal subgroup $H$, where $H$ is central in $G_1$ or $G_2$, then $G$ is finitely approximable with respect to conjugacy.
@article{MZM_1995_58_4_a4,
     author = {P. A. Zalesskii and O. I. Tavgen'},
     title = {Closed orbits and finite approximability with respect to conjugacy of free amalgamated products},
     journal = {Matemati\v{c}eskie zametki},
     pages = {525--535},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a4/}
}
TY  - JOUR
AU  - P. A. Zalesskii
AU  - O. I. Tavgen'
TI  - Closed orbits and finite approximability with respect to conjugacy of free amalgamated products
JO  - Matematičeskie zametki
PY  - 1995
SP  - 525
EP  - 535
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a4/
LA  - ru
ID  - MZM_1995_58_4_a4
ER  - 
%0 Journal Article
%A P. A. Zalesskii
%A O. I. Tavgen'
%T Closed orbits and finite approximability with respect to conjugacy of free amalgamated products
%J Matematičeskie zametki
%D 1995
%P 525-535
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a4/
%G ru
%F MZM_1995_58_4_a4
P. A. Zalesskii; O. I. Tavgen'. Closed orbits and finite approximability with respect to conjugacy of free amalgamated products. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 525-535. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a4/

[1] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uch. Zap. Ivanovskogo Gos. Ped. Inst., 18 (1958), 49–60 | Zbl

[2] Remeslennikov V. N., “Sopryazhennost v politsiklicheskikh gruppakh”, Algebra i logika, 8:6 (1969), 712–725 | MR | Zbl

[3] Formanek E., “Conjugacy separability in polycyclic groups”, Trans. Amer. Math. Soc., 67 (1949), 421–432 | DOI | MR

[4] Stebe P. F., “A residual property of certain groups”, Proc. Amer. Math. Soc., 26 (1970), 37–40 | DOI | MR

[5] Remeslennikov V. N., “Finitnaya approksimiruemost grupp otnositelno sopryazhennosti”, Sib. Matem. zhurn., 12:5 (1971), 1085–1099 | MR | Zbl

[6] Dyer J. L., “Separating conjugates in amalgamated free products and HNN-extensions”, J. Aust. Math. Soc. Ser. A, 29 (1980), 35–51 | DOI | MR | Zbl

[7] Ribes L., Zalesskii P., Conjugacy separability of amalgamated free products of groups, Preprint, Carleton Univercity, 1994

[8] Grunewald F., Segal D., “Conjugacy in polycyclic groups”, Communications in Algebra, 6 (1978), 775–798 | DOI | MR

[9] Platonov V. P., Tavgen O. I., “K probleme Grotendika o prokonechnykh popolneniyakh grupp”, DAN SSSR, 288:5 (1986), 1054–1058 | MR | Zbl

[10] Bass Kh., Milnor Dzh., Serr Zh.-P., “Reshenie kongruents problemy dlya $\operatorname {SL}_n$ ($n\ge 3$) i $\operatorname {Sp}_{2n}$ ($n\ge 2$)”, Matematika, 15:1 (1971), 44–60 | Zbl

[11] Baumslag G., “On the residual finiteness of generalized free products of nilpotent group”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl

[12] Shirvani M., “A converse to a residual finiteness theorem of G. Baumslag”, Proc. of the Amer. Math. Soc., 104 (1988), 703–706 | DOI | MR | Zbl

[13] Zalesskii P. A., Melnikov O. V., “Polugruppy prokonechnykh grupp, deistvuyuschie na derevyakh”, Matem. sb., 135(177) (1988), 419–439

[14] Serre J.-P., Arbres, amalgames, $\operatorname {SL}_2$, Asterisque, 46, Paris, 1977

[15] Ribes L., Zalesskii P. A., “On the profinite topology on a free group”, Bull. London Math. Soc., 334 (1993), 37–43 | DOI | MR