Nonlinear interpolation and norm minimization
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 512-524.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the set of convolution-type functions in $\mathbb R_d$ that satisfy the interpolation conditions contains a unique function whose convolution element has the minimum $L_p$-norm. The extremal function is determined by solving a nonlinear interpolation problem. The results are applied to an operator recovery problem.
@article{MZM_1995_58_4_a3,
     author = {A. A. Zhensykbaev},
     title = {Nonlinear interpolation and norm minimization},
     journal = {Matemati\v{c}eskie zametki},
     pages = {512--524},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a3/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - Nonlinear interpolation and norm minimization
JO  - Matematičeskie zametki
PY  - 1995
SP  - 512
EP  - 524
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a3/
LA  - ru
ID  - MZM_1995_58_4_a3
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T Nonlinear interpolation and norm minimization
%J Matematičeskie zametki
%D 1995
%P 512-524
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a3/
%G ru
%F MZM_1995_58_4_a3
A. A. Zhensykbaev. Nonlinear interpolation and norm minimization. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 512-524. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a3/

[1] Holladay J. C., “Smoothest curve approximation”, Math. Tables Aids Comput., 11 (1957), 233–243 | DOI | MR | Zbl

[2] Karlin S., “Some variational problems on certain Sobolev spaces and perfect splines”, Bull. Amer. Math. Soc., 79:1 (1973), 124–128 | DOI | MR | Zbl

[3] Fisher S. D., Jerome J. W., “The existence, characterization and essential uniqueness of solutions of $L^\infty $ extremal problems”, Trans. Amer. Math. Soc., 187 (1974), 391–404 | DOI | MR | Zbl

[4] Fisher S. D., Jerome J. W., “Spline solutions of $L^1$ extremal problems in one and several variables”, J. Approx. Theory, 13 (1975), 73–83 | DOI | MR | Zbl

[5] Golomb M., “$H^{m,p}$-extensions by $H^{m,p}$-splines”, J. Approx. Theory, 5 (1972), 238–275 | DOI | MR | Zbl

[6] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | Zbl

[7] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | Zbl

[8] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1987

[9] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1984

[10] Schumaker L. L., “Fitting surfaces to scattered data”, Approx. Theory, V. II, eds. Lorentz G. G., Chui C. K., Schumaker L. L., Acad. Press, N.Y., 1976, 203–268 | MR

[11] Micchelli C. A., Rivlin T. J., A survey of optimal recovery. Optimal estimation in approximation theory, Plenum Press, N.Y., 1977 | Zbl

[12] Matveev O. V., “Approksimativnye svoistva $D^m$-splainov”, DAN SSSR, 321:1 (1991), 14–18 | Zbl

[13] Matveev O. V., “O nekotorykh metodakh vosstanovleniya funktsii peremennykh, zadannykh na khaoticheskikh setkakh”, DAN SSSR, 326:4 (1992), 605–609 | Zbl

[14] Zhensykbaev A. A., “Splain-approksimatsiya i optimalnoe vosstanovlenie operatorov”, Matem. sb., 184:12 (1993), 3–22 | Zbl

[15] Zhensykbaev A. A., “Optimalnoe vosstanovlenie operatorov i approksimatsiya splainami”, Dokl. AN RK, 1992, no. 2, 8–13 | MR

[16] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | Zbl