Nonlinear interpolation and norm minimization
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 512-524

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the set of convolution-type functions in $\mathbb R_d$ that satisfy the interpolation conditions contains a unique function whose convolution element has the minimum $L_p$-norm. The extremal function is determined by solving a nonlinear interpolation problem. The results are applied to an operator recovery problem.
@article{MZM_1995_58_4_a3,
     author = {A. A. Zhensykbaev},
     title = {Nonlinear interpolation and norm minimization},
     journal = {Matemati\v{c}eskie zametki},
     pages = {512--524},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a3/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - Nonlinear interpolation and norm minimization
JO  - Matematičeskie zametki
PY  - 1995
SP  - 512
EP  - 524
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a3/
LA  - ru
ID  - MZM_1995_58_4_a3
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T Nonlinear interpolation and norm minimization
%J Matematičeskie zametki
%D 1995
%P 512-524
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a3/
%G ru
%F MZM_1995_58_4_a3
A. A. Zhensykbaev. Nonlinear interpolation and norm minimization. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 512-524. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a3/