Left and right distributive rings
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 604-627
Cet article a éte moissonné depuis la source Math-Net.Ru
By a distributive module we mean a module with a distributive lattice of submodules. Let $A$ be a right distributive ring that is algebraic over its center and let $B$ be the quotient ring of $A$ by its prime radical $H$. Then $B$ is a left distributive ring, and $H$ coincides with the set of all nilpotent elements of $A$.
@article{MZM_1995_58_4_a11,
author = {A. A. Tuganbaev},
title = {Left and right distributive rings},
journal = {Matemati\v{c}eskie zametki},
pages = {604--627},
year = {1995},
volume = {58},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a11/}
}
A. A. Tuganbaev. Left and right distributive rings. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 604-627. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a11/
[1] Gräter J., “Ringe mit distributivem Rechtsidealverband”, Results Math., 12 (1987), 95–98 | MR | Zbl
[2] Tuganbaev A. A., “Distributivnye koltsa i moduli”, Matem. zametki, 47:2 (1990), 115–123 | MR
[3] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977
[4] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979
[5] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, 1975 | Zbl
[6] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975