Left and right distributive rings
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 604-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

By a distributive module we mean a module with a distributive lattice of submodules. Let $A$ be a right distributive ring that is algebraic over its center and let $B$ be the quotient ring of $A$ by its prime radical $H$. Then $B$ is a left distributive ring, and $H$ coincides with the set of all nilpotent elements of $A$.
@article{MZM_1995_58_4_a11,
     author = {A. A. Tuganbaev},
     title = {Left and right distributive rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {604--627},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a11/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Left and right distributive rings
JO  - Matematičeskie zametki
PY  - 1995
SP  - 604
EP  - 627
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a11/
LA  - ru
ID  - MZM_1995_58_4_a11
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Left and right distributive rings
%J Matematičeskie zametki
%D 1995
%P 604-627
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a11/
%G ru
%F MZM_1995_58_4_a11
A. A. Tuganbaev. Left and right distributive rings. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 604-627. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a11/

[1] Gräter J., “Ringe mit distributivem Rechtsidealverband”, Results Math., 12 (1987), 95–98 | MR | Zbl

[2] Tuganbaev A. A., “Distributivnye koltsa i moduli”, Matem. zametki, 47:2 (1990), 115–123 | MR

[3] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[4] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979

[5] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, 1975 | Zbl

[6] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975