Nonnegative matrices with zero permanent
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 493-504
Cet article a éte moissonné depuis la source Math-Net.Ru
We study $m\times n$ matrices, $m\ge n$, whose elements are either 1) arbitrary nonnegative numbers or 2) belong to a given finite set of nonnegative numbers that includes zero. In the finite case, we obtain an asymptotic expression, as $n\to\infty$, for the number of matrices with zero permanent. For any nonnegative matrix with zero permanent a standard representation is derived.
@article{MZM_1995_58_4_a1,
author = {Yu. V. Bolotnikov and V. E. Tarakanov},
title = {Nonnegative matrices with zero permanent},
journal = {Matemati\v{c}eskie zametki},
pages = {493--504},
year = {1995},
volume = {58},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a1/}
}
Yu. V. Bolotnikov; V. E. Tarakanov. Nonnegative matrices with zero permanent. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 493-504. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a1/
[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1967
[2] Erdös P., Rényi A., “On random matrices”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 455–461 | Zbl
[3] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978 | Zbl
[4] Fennez T. I., Loizou G., “Combinatorial aspects of rectangular non-negative matrices”, Discrete Math., 20 (1977), 217–234 | MR