Nonnegative matrices with zero permanent
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 493-504.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $m\times n$ matrices, $m\ge n$, whose elements are either 1) arbitrary nonnegative numbers or 2) belong to a given finite set of nonnegative numbers that includes zero. In the finite case, we obtain an asymptotic expression, as $n\to\infty$, for the number of matrices with zero permanent. For any nonnegative matrix with zero permanent a standard representation is derived.
@article{MZM_1995_58_4_a1,
     author = {Yu. V. Bolotnikov and V. E. Tarakanov},
     title = {Nonnegative matrices with zero permanent},
     journal = {Matemati\v{c}eskie zametki},
     pages = {493--504},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a1/}
}
TY  - JOUR
AU  - Yu. V. Bolotnikov
AU  - V. E. Tarakanov
TI  - Nonnegative matrices with zero permanent
JO  - Matematičeskie zametki
PY  - 1995
SP  - 493
EP  - 504
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a1/
LA  - ru
ID  - MZM_1995_58_4_a1
ER  - 
%0 Journal Article
%A Yu. V. Bolotnikov
%A V. E. Tarakanov
%T Nonnegative matrices with zero permanent
%J Matematičeskie zametki
%D 1995
%P 493-504
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a1/
%G ru
%F MZM_1995_58_4_a1
Yu. V. Bolotnikov; V. E. Tarakanov. Nonnegative matrices with zero permanent. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 493-504. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a1/

[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1967

[2] Erdös P., Rényi A., “On random matrices”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 455–461 | Zbl

[3] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978 | Zbl

[4] Fennez T. I., Loizou G., “Combinatorial aspects of rectangular non-negative matrices”, Discrete Math., 20 (1977), 217–234 | MR