The $N^{-1}$-property of maps and Luzin's condition $(N)$
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 411-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $f\colon G\to\mathbb R^n$, where $G$ is an open set in $\mathbb R^n$, has the $N^{-1}$-property if for all $E\subset\mathbb R^n$ we have $\bigl\{|E|=0\Rightarrow|f^{-1}(E)|=0\bigr\}$ ($|\cdot|$ is the Lebesgue measure). The article is concerned with the relations between the $N^{-1}$-property of functions, the maximal rank of derivatives, and the differentiability almost everywhere of composite functions.
@article{MZM_1995_58_3_a8,
     author = {S. P. Ponomarev},
     title = {The $N^{-1}$-property of maps and {Luzin's} condition $(N)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {411--418},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a8/}
}
TY  - JOUR
AU  - S. P. Ponomarev
TI  - The $N^{-1}$-property of maps and Luzin's condition $(N)$
JO  - Matematičeskie zametki
PY  - 1995
SP  - 411
EP  - 418
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a8/
LA  - ru
ID  - MZM_1995_58_3_a8
ER  - 
%0 Journal Article
%A S. P. Ponomarev
%T The $N^{-1}$-property of maps and Luzin's condition $(N)$
%J Matematičeskie zametki
%D 1995
%P 411-418
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a8/
%G ru
%F MZM_1995_58_3_a8
S. P. Ponomarev. The $N^{-1}$-property of maps and Luzin's condition $(N)$. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 411-418. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a8/

[1] Vodopyanov S. K., Goldshtein V. M., “Kvazikonformnye otobrazheniya i prostranstva funktsii s pervymi obobschennymi proizvodnymi”, Sib. matem. zhurn., 17:3 (1976), 515–531 | MR | Zbl

[2] Saks S., Teoriya integrala, IL, M., 1949

[3] Rado T., Reichelderfer P. V., Continuous transformations in analysis, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955 | Zbl

[4] Federer H., Geometric measure theory, Springer-Verlag, Berlin–Heidelberg–New York, 1969

[5] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[6] Mac Millan D. R., “Taming Cantor Sets in $E^n$”, Bull. Amer. Math. Soc., 70:5 (1964), 706–708 | DOI | MR

[7] Gugenheim V. K. A. M., “Piecewise-linear isotopy and imbedding of elements and spheres, I”, Proc. London Math. Soc., 3 (1953), 29–53 | DOI | MR | Zbl

[8] Ponomarev S. P., “Primer gomeomorfizma klassa $\operatorname {ACT}L^p$, ne yavlyayuschegosya absolyutno nepreryvnym v smysle Banakha”, DAN SSSR, 201:5 (1971), 1053–1054 | MR | Zbl

[9] Rurk K., Sanderson B., Vvedenie v kusochno-lineinuyu topologiyu, Mir, M., 1974

[10] Okstobi Dzh., Mera i kategoriya, Mir, M., 1974