The $N^{-1}$-property of maps and Luzin's condition $(N)$
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 411-418

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $f\colon G\to\mathbb R^n$, where $G$ is an open set in $\mathbb R^n$, has the $N^{-1}$-property if for all $E\subset\mathbb R^n$ we have $\bigl\{|E|=0\Rightarrow|f^{-1}(E)|=0\bigr\}$ ($|\cdot|$ is the Lebesgue measure). The article is concerned with the relations between the $N^{-1}$-property of functions, the maximal rank of derivatives, and the differentiability almost everywhere of composite functions.
@article{MZM_1995_58_3_a8,
     author = {S. P. Ponomarev},
     title = {The $N^{-1}$-property of maps and {Luzin's} condition $(N)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {411--418},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a8/}
}
TY  - JOUR
AU  - S. P. Ponomarev
TI  - The $N^{-1}$-property of maps and Luzin's condition $(N)$
JO  - Matematičeskie zametki
PY  - 1995
SP  - 411
EP  - 418
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a8/
LA  - ru
ID  - MZM_1995_58_3_a8
ER  - 
%0 Journal Article
%A S. P. Ponomarev
%T The $N^{-1}$-property of maps and Luzin's condition $(N)$
%J Matematičeskie zametki
%D 1995
%P 411-418
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a8/
%G ru
%F MZM_1995_58_3_a8
S. P. Ponomarev. The $N^{-1}$-property of maps and Luzin's condition $(N)$. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 411-418. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a8/