Integral invariants of the Hamilton equations
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 379-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found for the existence of integral invariants of Hamiltonian systems. For two-degrees-of-freedom systems these conditions are intimately related to the existence of nontrivial symmetry fields and multivalued integrals. Any integral invariant of a geodesic flow on an analytic surface of genus greater than 1 is shown to be a constant multiple of the Poincaré–Cartan invariant. Poincaré's conjecture that there are no additional integral invariants in the restricted three-body problem is proved.
@article{MZM_1995_58_3_a6,
     author = {V. V. Kozlov},
     title = {Integral invariants of the {Hamilton} equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {379--393},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a6/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Integral invariants of the Hamilton equations
JO  - Matematičeskie zametki
PY  - 1995
SP  - 379
EP  - 393
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a6/
LA  - ru
ID  - MZM_1995_58_3_a6
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Integral invariants of the Hamilton equations
%J Matematičeskie zametki
%D 1995
%P 379-393
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a6/
%G ru
%F MZM_1995_58_3_a6
V. V. Kozlov. Integral invariants of the Hamilton equations. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 379-393. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a6/

[1] Puankare A., “Novye metody nebesnoi mekhaniki, III”, Izbr. trudy, T. II, Nauka, M., 1972

[2] Kartan E., Integralnye invarianty, Gostekhizdat, M.–L., 1940

[3] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973

[4] Hwa-Chung-Lee, “The universal integral invariants of Hamoltonian systems and application to the theory of canonical transformations”, Proc. R. Soc. of Edinburgh. Sect. A. Part 3, LXII (1946–1948), 237–246

[5] Kozlov V. V., “Liuvillevost invariantnykh mer vpolne integriruemykh sistem i uravnenie Monzha–Ampera”, Matem. zametki, 53:4 (1993), 45–52 | MR | Zbl

[6] Kozlov V. V., “Dynamical systems determined by the Navier–Stokes equations”, Rus. J. Math. Phys., 1:1 (1993), 57–69 | MR | Zbl

[7] Bogolyubov N. N., Mitropolskii Yu. L., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974

[8] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980 | Zbl

[9] Sharle K. L., Nebesnaya mekhanika, Nauka, M., 1966

[10] Anosov D. V., Sinai Ya. G., “Nekotorye gladkie ergodicheskie sistemy”, UMN, 22:5 (1967), 107–172 | MR | Zbl

[11] Kozlov V. V., “O gruppakh simmetrii dinamicheskikh sistem”, PMM, 52:4 (1988), 531–541 | MR | Zbl

[12] Kozlov V. V., “O gruppakh simmetrii geodezicheskikh potokov na zamknutykh poverkhnostyakh”, Matem. zametki, 48:5 (1990), 62–67 | MR

[13] Alekseev V. M., “Finalnye dvizheniya v zadache trekh tel i simvolicheskaya dinamika”, UMN, 36:4 (1981), 161–176 | MR | Zbl

[14] Llibre J., Simo C., “Oscillatory solutions in the planar restricted three-body problem”, Math. Ann., 248:2 (1980), 153–184 | DOI | MR | Zbl

[15] Bolotin S. V., Kozlov V. V., “Symmetry fields of geodesic flows”, Rus. J. Math. Phys., 3:3 (1995), 279–296 | MR