The generalized Waring problem: A~new property of positive integers
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 372-378
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the problem of whether a positive integer $n>1$ can be written as the sum of $s$ summands that are $r$th powers of integer $s\ge m$, where $m\ge0$ is a chosen integer (for $m=0$ we have the classical Waring problem). For this problem, we define in a natural way arithmetic functions $G(m,r)$ and $g(m,r)$ that are the analogs of the Hilbert functions $G(r)$ and $g(r)$ for the classical Waring problem. It is proved that every positive integer $n$ exceeding some threshold value can be written as the above sum, simultaneously for all $s$, $1\le s\le n$, with a finite number of exceptions, which are determined explicitly.
@article{MZM_1995_58_3_a5,
author = {A. A. Zenkin},
title = {The generalized {Waring} problem: {A~new} property of positive integers},
journal = {Matemati\v{c}eskie zametki},
pages = {372--378},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a5/}
}
A. A. Zenkin. The generalized Waring problem: A~new property of positive integers. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 372-378. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a5/