The generalized Waring problem: A~new property of positive integers
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 372-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of whether a positive integer $n>1$ can be written as the sum of $s$ summands that are $r$th powers of integer $s\ge m$, where $m\ge0$ is a chosen integer (for $m=0$ we have the classical Waring problem). For this problem, we define in a natural way arithmetic functions $G(m,r)$ and $g(m,r)$ that are the analogs of the Hilbert functions $G(r)$ and $g(r)$ for the classical Waring problem. It is proved that every positive integer $n$ exceeding some threshold value can be written as the above sum, simultaneously for all $s$, $1\le s\le n$, with a finite number of exceptions, which are determined explicitly.
@article{MZM_1995_58_3_a5,
     author = {A. A. Zenkin},
     title = {The generalized {Waring} problem: {A~new} property of positive integers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {372--378},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a5/}
}
TY  - JOUR
AU  - A. A. Zenkin
TI  - The generalized Waring problem: A~new property of positive integers
JO  - Matematičeskie zametki
PY  - 1995
SP  - 372
EP  - 378
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a5/
LA  - ru
ID  - MZM_1995_58_3_a5
ER  - 
%0 Journal Article
%A A. A. Zenkin
%T The generalized Waring problem: A~new property of positive integers
%J Matematičeskie zametki
%D 1995
%P 372-378
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a5/
%G ru
%F MZM_1995_58_3_a5
A. A. Zenkin. The generalized Waring problem: A~new property of positive integers. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 372-378. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a5/

[1] Zenkin A. A., “Obobschenie teoremy A. Viferikha na sluchai naturalnykh slagaemykh”, DAN SSSR, 264:2 (1982), 282–285 | MR | Zbl

[2] Zenkin A. A., “Obobschennye teoremy Gilberta–Varinga”, Vestnik MGU. Ser. matem., mekh., 1983, no. 2, 11–19 | MR | Zbl

[3] Zenkin A. A., Kognitivnaya kompyuternaya grafika, Nauka, M., 1991 | Zbl

[4] Pall G., “On sums of squares”, Amer. Math. Monthly, 40 (1933), 10–18 | DOI | MR

[5] Sierpinski W., Elementary Theory of numbers, Warszawa, 1964

[6] Schinzel A., “Sur les sommes de trois carres”, Bull. de l'Acad. Polonaise des sci. Ser. math., astr. et phys., 7:8 (1959), 307–310 | MR | Zbl

[7] Zenkin A. A., “Warning's problem: $g(1,4)=21$ for fourth powers of positive integers”, Comp. and Math. with Appl., 17:11 (1989), 1503–1506 | DOI | MR | Zbl

[8] Zenkin A. A., “Problema Varinga dlya summ bikvadratov polozhitelnykh tselykh chisel: $g(1,4)=21$”, Matem. zametki, 54:5 (1993), 45–56 | MR | Zbl