Homogeneous Riemannian manifolds of positive Ricci curvature
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 334-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a homogeneous effective space $M=G/H$, where $G$ is a connected Lie group and $H\subset G$ is a compact subgroup, admits a $G$-invariant Riemannian metric of positive Ricci curvature if and only if the space $M$ is compact and its fundamental group $\pi_1(M)$ is finite (in this case any normal metric on $G/H$ is suitable). This is equivalent to the following conditions: the group $G$ is compact and the largest semisimple subgroup $LG\subset G$ is transitive on $G/H$. Furthermore, if $G$ is nonsemisimple, then there exists a $G$-invariant fibration of $M$ over an effective homogeneous space of a compact semisimple Lie group with the torus as the fiber.
@article{MZM_1995_58_3_a1,
     author = {V. N. Berestovskii},
     title = {Homogeneous {Riemannian} manifolds of positive {Ricci} curvature},
     journal = {Matemati\v{c}eskie zametki},
     pages = {334--340},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a1/}
}
TY  - JOUR
AU  - V. N. Berestovskii
TI  - Homogeneous Riemannian manifolds of positive Ricci curvature
JO  - Matematičeskie zametki
PY  - 1995
SP  - 334
EP  - 340
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a1/
LA  - ru
ID  - MZM_1995_58_3_a1
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%T Homogeneous Riemannian manifolds of positive Ricci curvature
%J Matematičeskie zametki
%D 1995
%P 334-340
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a1/
%G ru
%F MZM_1995_58_3_a1
V. N. Berestovskii. Homogeneous Riemannian manifolds of positive Ricci curvature. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 334-340. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a1/

[1] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962

[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[3] Besse A., Einshteinovy mnogoobraziya, T. 1, 2, Mir, M., 1990

[4] Berestovskii V. N., “Kompaktnye odnorodnye mnogoobraziya s integriruemymi invariantnymi raspredeleniyami”, Izv. VUZov. Matematika, 1992, no. 6, 42–48 | MR | Zbl

[5] Gorbatsevich V. V., Onischik A. L., “Gruppy Li preobrazovanii”, Itogi nauki i tekhniki. Sovr. problemy matematiki. Fundam. napr., 20, VINITI, M., 1988, 103–240 | MR

[6] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973 | Zbl

[7] Berestovskii V. N., Volper D. E., “Klass $U(n)$-invariantnykh rimanovykh metrik na mnogoobraziyakh, diffeomorfnykh sferam nechetnoi razmernosti”, Sib. matem. zhurn., 34:4 (1993), 24–32 | MR | Zbl