Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_2_a8, author = {Yu. V. Muranov}, title = {$K$-groups of quadratic extensions of rings}, journal = {Matemati\v{c}eskie zametki}, pages = {272--280}, publisher = {mathdoc}, volume = {58}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a8/} }
Yu. V. Muranov. $K$-groups of quadratic extensions of rings. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 272-280. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a8/
[1] Wall C. T. C., Foundation of algebraic $L$-theory, LN, 343, 1972
[2] Hambleton I., Ranicki A., Taylor L., “Raund $L$-theory”, J. of Pure and Appl. Alg., 47 (1987), 131–154 | DOI | MR | Zbl
[3] Kharshiladze A. F., “Ermitova $K$-teoriya i kvadratichnye rasshireniya kolets”, Tr. MMO, 41, URSS, M., 1980, 1–36 | MR | Zbl
[4] Ranicki A., $L$-theory of twisted quadratic extensions. Appendix 4, Preprint, Princeton, 1981 | Zbl
[5] Hambleton I., Taylor L., Williams B., “An introduction to the maps between surgery obstruction groups”, Lect. Notes in Math., 1051 (1984), 49–127 | DOI | MR | Zbl
[6] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh 2-grupp”, Matem. sb., 181:8 (1990), 1061–1098 | Zbl
[7] Muranov Yu. V., “Otnositelnye gruppy Uolla i dekoratsii”, Matem. sb., 185:12 (1994), 79–100 | Zbl
[8] Wall C. T. C., “On the classification of Hermitian forms. VI: Group rings”, Ann. Math., 103 (1976), 1–80 | DOI | MR | Zbl
[9] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | Zbl
[10] Ranicki A., “Exact sequences in the algebraic theory of surgery”, Math. Notes., 26, Princeton, 1981 | MR | Zbl
[11] Maklein S., Gomologiya, Mir, M., 1966