$K$-groups of quadratic extensions of rings
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 272-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the Levin braid connecting the Tate cohomology of $K$-groups for quadratic extensions of rings with antistructures. Explicit formulas for isomorphisms of relative cohomology groups for the induced mapping and for the transfer mapping are obtained; these formulas are necessary in the construction of the Levin braid.
@article{MZM_1995_58_2_a8,
     author = {Yu. V. Muranov},
     title = {$K$-groups of quadratic extensions of rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {272--280},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a8/}
}
TY  - JOUR
AU  - Yu. V. Muranov
TI  - $K$-groups of quadratic extensions of rings
JO  - Matematičeskie zametki
PY  - 1995
SP  - 272
EP  - 280
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a8/
LA  - ru
ID  - MZM_1995_58_2_a8
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%T $K$-groups of quadratic extensions of rings
%J Matematičeskie zametki
%D 1995
%P 272-280
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a8/
%G ru
%F MZM_1995_58_2_a8
Yu. V. Muranov. $K$-groups of quadratic extensions of rings. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 272-280. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a8/

[1] Wall C. T. C., Foundation of algebraic $L$-theory, LN, 343, 1972

[2] Hambleton I., Ranicki A., Taylor L., “Raund $L$-theory”, J. of Pure and Appl. Alg., 47 (1987), 131–154 | DOI | MR | Zbl

[3] Kharshiladze A. F., “Ermitova $K$-teoriya i kvadratichnye rasshireniya kolets”, Tr. MMO, 41, URSS, M., 1980, 1–36 | MR | Zbl

[4] Ranicki A., $L$-theory of twisted quadratic extensions. Appendix 4, Preprint, Princeton, 1981 | Zbl

[5] Hambleton I., Taylor L., Williams B., “An introduction to the maps between surgery obstruction groups”, Lect. Notes in Math., 1051 (1984), 49–127 | DOI | MR | Zbl

[6] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh 2-grupp”, Matem. sb., 181:8 (1990), 1061–1098 | Zbl

[7] Muranov Yu. V., “Otnositelnye gruppy Uolla i dekoratsii”, Matem. sb., 185:12 (1994), 79–100 | Zbl

[8] Wall C. T. C., “On the classification of Hermitian forms. VI: Group rings”, Ann. Math., 103 (1976), 1–80 | DOI | MR | Zbl

[9] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | Zbl

[10] Ranicki A., “Exact sequences in the algebraic theory of surgery”, Math. Notes., 26, Princeton, 1981 | MR | Zbl

[11] Maklein S., Gomologiya, Mir, M., 1966