Rate of divergence of some integrals
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 243-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower bounds for the absolute values of the functions $M(x)=\sum_{n\le x}\mu(n)$ and $\Delta(x)=\Bigl(\sum_{n\le x}\Lambda(n)\Bigr)-x$ , where $\mu$ is the Möbius function and $\Lambda$ is the Manholdt function, are obtained.
@article{MZM_1995_58_2_a6,
     author = {S. V. Konyagin and A. Yu. Popov},
     title = {Rate of divergence of some integrals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {243--255},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a6/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - A. Yu. Popov
TI  - Rate of divergence of some integrals
JO  - Matematičeskie zametki
PY  - 1995
SP  - 243
EP  - 255
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a6/
LA  - ru
ID  - MZM_1995_58_2_a6
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A A. Yu. Popov
%T Rate of divergence of some integrals
%J Matematičeskie zametki
%D 1995
%P 243-255
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a6/
%G ru
%F MZM_1995_58_2_a6
S. V. Konyagin; A. Yu. Popov. Rate of divergence of some integrals. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 243-255. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a6/

[1] Walfisz A., Weylsche exponentialsummen in der Neueren Zahlentheorie, Berlin, 1963 | Zbl

[2] Ellison W., Mendes France M. Les nombres premiers, Paris, 1975

[3] Karatsuba A. A., “Raspredelenie prostykh chisel”, UMN, 45:5 (1990), 81–140 | MR | Zbl

[4] Cramer H., “Ein Mittelwertsatz der Primzahltheorie”, Mat. Zeitschrift, 12 (1922), 147–153 | DOI | MR

[5] Titchmarsh E., The theory of the Rieman Zeta-function, Second Edition, Oxford, 1986 | Zbl

[6] Ribenboim A. M., “Rekordy prostykh chisel”, UMN, 42:5 (1987), 119–176 | MR | Zbl