Rate of divergence of some integrals
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 243-255
Cet article a éte moissonné depuis la source Math-Net.Ru
Lower bounds for the absolute values of the functions $M(x)=\sum_{n\le x}\mu(n)$ and $\Delta(x)=\Bigl(\sum_{n\le x}\Lambda(n)\Bigr)-x$ , where $\mu$ is the Möbius function and $\Lambda$ is the Manholdt function, are obtained.
@article{MZM_1995_58_2_a6,
author = {S. V. Konyagin and A. Yu. Popov},
title = {Rate of divergence of some integrals},
journal = {Matemati\v{c}eskie zametki},
pages = {243--255},
year = {1995},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a6/}
}
S. V. Konyagin; A. Yu. Popov. Rate of divergence of some integrals. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 243-255. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a6/
[1] Walfisz A., Weylsche exponentialsummen in der Neueren Zahlentheorie, Berlin, 1963 | Zbl
[2] Ellison W., Mendes France M. Les nombres premiers, Paris, 1975
[3] Karatsuba A. A., “Raspredelenie prostykh chisel”, UMN, 45:5 (1990), 81–140 | MR | Zbl
[4] Cramer H., “Ein Mittelwertsatz der Primzahltheorie”, Mat. Zeitschrift, 12 (1922), 147–153 | DOI | MR
[5] Titchmarsh E., The theory of the Rieman Zeta-function, Second Edition, Oxford, 1986 | Zbl
[6] Ribenboim A. M., “Rekordy prostykh chisel”, UMN, 42:5 (1987), 119–176 | MR | Zbl