Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 218-230

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any $N\times N$ orthogonal matrix $A=\{a_{ij}\}$ we have $$ \sum_{i=1}^N\max_{1\le n\le N}\biggl|\sum_{j=1}^na_{ij}\biggr| \ge\frac 1{30}N^{1/2}\log N. $$ A multidimensional analog of this result is also established.
@article{MZM_1995_58_2_a4,
     author = {B. S. Kashin and S. I. Sharek},
     title = {Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {218--230},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a4/}
}
TY  - JOUR
AU  - B. S. Kashin
AU  - S. I. Sharek
TI  - Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series
JO  - Matematičeskie zametki
PY  - 1995
SP  - 218
EP  - 230
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a4/
LA  - ru
ID  - MZM_1995_58_2_a4
ER  - 
%0 Journal Article
%A B. S. Kashin
%A S. I. Sharek
%T Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series
%J Matematičeskie zametki
%D 1995
%P 218-230
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a4/
%G ru
%F MZM_1995_58_2_a4
B. S. Kashin; S. I. Sharek. Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 218-230. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a4/