Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 218-230
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for any $N\times N$ orthogonal matrix $A=\{a_{ij}\}$ we have
$$
\sum_{i=1}^N\max_{1\le n\le N}\biggl|\sum_{j=1}^na_{ij}\biggr|
\ge\frac 1{30}N^{1/2}\log N.
$$
A multidimensional analog of this result is also established.
@article{MZM_1995_58_2_a4,
author = {B. S. Kashin and S. I. Sharek},
title = {Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series},
journal = {Matemati\v{c}eskie zametki},
pages = {218--230},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a4/}
}
TY - JOUR AU - B. S. Kashin AU - S. I. Sharek TI - Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series JO - Matematičeskie zametki PY - 1995 SP - 218 EP - 230 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a4/ LA - ru ID - MZM_1995_58_2_a4 ER -
B. S. Kashin; S. I. Sharek. Logarithmic growth of the $L^1$-norm of the majorant of partial sums of an orthogonal series. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 218-230. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a4/