Heat equation with degeneration in Holder and Slobodetskii spaces
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 189-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study initial-boundary value problems for the heat equation in which heat conductivity $\alpha^2(x)$ may depend on the space variable $x\in\mathbb R^+$; the nonnegative function $\alpha(x)$ is allowed to tend to infinity (respectively, zero) as $x\to+\infty$ (respectively, $x\to+0$). We prove that these problems are well posed and examine the smoothness of solutions. It is shown that criteria for smoothness of the solutions can be stated in terms of certain functionals, namely, the Hölder constant (for Hölder spaces) and the generalized Hölder constant (for Slobodetskii spaces).
@article{MZM_1995_58_2_a2,
     author = {V. P. Glushko and S. A. Tkacheva},
     title = {Heat equation with degeneration in {Holder} and {Slobodetskii} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {189--203},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a2/}
}
TY  - JOUR
AU  - V. P. Glushko
AU  - S. A. Tkacheva
TI  - Heat equation with degeneration in Holder and Slobodetskii spaces
JO  - Matematičeskie zametki
PY  - 1995
SP  - 189
EP  - 203
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a2/
LA  - ru
ID  - MZM_1995_58_2_a2
ER  - 
%0 Journal Article
%A V. P. Glushko
%A S. A. Tkacheva
%T Heat equation with degeneration in Holder and Slobodetskii spaces
%J Matematičeskie zametki
%D 1995
%P 189-203
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a2/
%G ru
%F MZM_1995_58_2_a2
V. P. Glushko; S. A. Tkacheva. Heat equation with degeneration in Holder and Slobodetskii spaces. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 189-203. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a2/

[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[2] Glushko V. P., “Vesovye funktsionalnye prostranstva i nekotorye ikh svoistva”, Math. Nachr., 132 (1987), 253–280 | DOI | MR | Zbl

[3] Glushko V. P., Bogatov M. I., Prostranstva tipa S. L. Soboleva drobnogo poryadka s vesom i ikh svoistva, Dep. VINITI. No. 3239-79, 1979, RZhMat

[4] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | Zbl

[5] Savchenko Yu. B., “Multiplikatory v vesovykh prostranstvakh Geldera i nekotorye vyrozhdayuschiesya psevdodifferentsialnye uravneniya”, Neklassicheskie uravneniya matem. fiziki, Novosibirsk, 1986, 194–197 | MR

[6] Glushko V. P., Savchenko Yu. B., “Vyrozhdayuschiesya ellipticheskie uravneniya vysokogo poryadka: prostranstva, operatory, granichnye zadachi”, Itogi nauki i tekhniki. Matem. analiz, 23, VINITI, M., 1985, 125–218 | MR | Zbl

[7] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[8] Yakovlev G. N., “Granichnye svoistva funktsii klassa na oblastyakh s uglovymi tochkami”, DAN, 140 (1961), 73–77