Existence of best approximation elements in $C(Q,X)$
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 163-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalizing the result of A. L. Garkavi (the case $X=\mathbb R$) and his own previous result concerning $X=\mathbb C$), the author characterizes the existence subspaces of finite codimension in the space $C(Q,X)$ of continuous functions on a bicompact space $Q$ with values in a Banach space $X$, under some assumptions concerning $X$. Under the same assumptions, it is proved that in the space of uniform limits of simple functions, each subspace of the form $$ \biggl\{g\in B:\int_Q\bigl\langle g(t),d\mu_i\bigr\rangle=0,\ i=1,\dots,n\biggr\}, $$ where $\mu_i\in C(Q,X)^*$ are vector measures of regular bounded variation, is an existence subspace (the integral is understood in the sense of Gavurin).
@article{MZM_1995_58_2_a0,
     author = {L. P. Vlasov},
     title = {Existence of best approximation elements in $C(Q,X)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a0/}
}
TY  - JOUR
AU  - L. P. Vlasov
TI  - Existence of best approximation elements in $C(Q,X)$
JO  - Matematičeskie zametki
PY  - 1995
SP  - 163
EP  - 175
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a0/
LA  - ru
ID  - MZM_1995_58_2_a0
ER  - 
%0 Journal Article
%A L. P. Vlasov
%T Existence of best approximation elements in $C(Q,X)$
%J Matematičeskie zametki
%D 1995
%P 163-175
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a0/
%G ru
%F MZM_1995_58_2_a0
L. P. Vlasov. Existence of best approximation elements in $C(Q,X)$. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 163-175. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a0/

[1] Garkavi A. L., “Zadacha Khelli i nailuchshee priblizhenie v prostranstve nepreryvnykh funktsii”, Izv. AN SSSR, 31:3 (1967), 641–656 | MR | Zbl

[2] Vlasov L. P., “Suschestvovanie elementov nailuchshego priblizheniya v kompleksnom $C(Q)$”, Matem. zametki, 40:5 (1986), 627–634 | MR | Zbl

[3] Ustinov G. M., “Issledovaniya po fundamentalnomu analizu i topologii”, Sb. nauchn. tr., UrGU, Sverdlovsk, 1990, 127–130 | MR

[4] Zinger I., “Lineinye funktsionaly na prostranstve nepreryvnykh otobrazhenii bikompaktnogo khausdorfovogo prostranstva v prostranstvo Banakha”, Revue Roum. Math. Pur. Appl., 2 (1957), 301–315 | Zbl

[5] Distel Dzh., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980

[6] Edvards R., Funktsionalnyi analiz (teoriya i prilozheniya), Mir, M., 1969

[7] Bessaga C., Pelczyński A., Selected topics in infinitedimensional topology, Monogr. Mat., 58, PWN, Warsava, 1975 | MR | Zbl

[8] Danford N., Shvarts Dzh., Lineinye operatory (obschaya teoriya), IL, M., 1962

[9] Vlasov L. P., “Podprostranstva konechnoi korazmernosti: suschestvovanie elementov nailuchshego priblizheniya”, Matem. zametki, 37:1 (1985), 78–85 | MR | Zbl

[10] Vlasov L. P., “Kharakteristika obobschennykh i klassicheskikh elementov nailuchshego priblizheniya otnositelno podprostranstv konechnoi korazmernosti”, Matem. zametki, 28:5 (1980), 707–716 | MR | Zbl