Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_2_a0, author = {L. P. Vlasov}, title = {Existence of best approximation elements in $C(Q,X)$}, journal = {Matemati\v{c}eskie zametki}, pages = {163--175}, publisher = {mathdoc}, volume = {58}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a0/} }
L. P. Vlasov. Existence of best approximation elements in $C(Q,X)$. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 163-175. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a0/
[1] Garkavi A. L., “Zadacha Khelli i nailuchshee priblizhenie v prostranstve nepreryvnykh funktsii”, Izv. AN SSSR, 31:3 (1967), 641–656 | MR | Zbl
[2] Vlasov L. P., “Suschestvovanie elementov nailuchshego priblizheniya v kompleksnom $C(Q)$”, Matem. zametki, 40:5 (1986), 627–634 | MR | Zbl
[3] Ustinov G. M., “Issledovaniya po fundamentalnomu analizu i topologii”, Sb. nauchn. tr., UrGU, Sverdlovsk, 1990, 127–130 | MR
[4] Zinger I., “Lineinye funktsionaly na prostranstve nepreryvnykh otobrazhenii bikompaktnogo khausdorfovogo prostranstva v prostranstvo Banakha”, Revue Roum. Math. Pur. Appl., 2 (1957), 301–315 | Zbl
[5] Distel Dzh., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980
[6] Edvards R., Funktsionalnyi analiz (teoriya i prilozheniya), Mir, M., 1969
[7] Bessaga C., Pelczyński A., Selected topics in infinitedimensional topology, Monogr. Mat., 58, PWN, Warsava, 1975 | MR | Zbl
[8] Danford N., Shvarts Dzh., Lineinye operatory (obschaya teoriya), IL, M., 1962
[9] Vlasov L. P., “Podprostranstva konechnoi korazmernosti: suschestvovanie elementov nailuchshego priblizheniya”, Matem. zametki, 37:1 (1985), 78–85 | MR | Zbl
[10] Vlasov L. P., “Kharakteristika obobschennykh i klassicheskikh elementov nailuchshego priblizheniya otnositelno podprostranstv konechnoi korazmernosti”, Matem. zametki, 28:5 (1980), 707–716 | MR | Zbl