Mutual isomorphisms of translations of a~homogeneous flow
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 98-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ergodic one-parameter flows $(G/\Gamma,g_{\mathbb R})$ induced by the left action of a subgroup $g_{\mathbb R}\subset G$ on homogeneous spaces of finite volume are considered. Let $\mathscr M\subset{\mathbb R}^+$ be the set of all $t>0$ such that the cascade $(G/\Gamma,g_{t{\mathbb Z}})$ is metrically isomorphic to the cascade $(G/\Gamma,g_{\mathbb Z})$. We prove that either $\mathscr M$ is at most countable or the subgroup $g_\mathscr M$ is horocyclic and $\mathscr M={\mathbb R}^+$. We prove that a metric isomorphism of ergodic quasi-unipotent cascades (or flows) is affine on almost all fibers of a certain natural bundle. The result generalizes Witte's theorem on the affinity of such isomorphisms of cascades with the mixing property; this is applied to the study of the structure of the set $\mathscr M\subset{\mathbb R}^+$. The proof is based on the fundamental Ratner theorem stating that the ergodic measures of unipotent cascades are algebraic.
@article{MZM_1995_58_1_a7,
     author = {A. N. Starkov},
     title = {Mutual isomorphisms of translations of a~homogeneous flow},
     journal = {Matemati\v{c}eskie zametki},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a7/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - Mutual isomorphisms of translations of a~homogeneous flow
JO  - Matematičeskie zametki
PY  - 1995
SP  - 98
EP  - 110
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a7/
LA  - ru
ID  - MZM_1995_58_1_a7
ER  - 
%0 Journal Article
%A A. N. Starkov
%T Mutual isomorphisms of translations of a~homogeneous flow
%J Matematičeskie zametki
%D 1995
%P 98-110
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a7/
%G ru
%F MZM_1995_58_1_a7
A. N. Starkov. Mutual isomorphisms of translations of a~homogeneous flow. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 98-110. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a7/

[1] Dani S. G., “Spectrum of an affine transformations”, Duke J. Math., 44 (1977), 125–156 | DOI | MR

[2] Marcus B., “The horocycle flow is mixing of all degrees”, Invent. Math., 46 (1978), 201–209 | DOI | MR | Zbl

[3] Ryzhikov V. V., “Svyaz peremeshivayuschikh svoistv potoka s izomorfizmami vkhodyaschikh v nego preobrazovanii”, Matem. zametki, 49 (1991), 98–106 | MR | Zbl

[4] Margulis G. A., “Dynamical and ergodic properties of subgroups actions on homogeneous spaces with applications to number theory” (Kyoto. Japan), Proc. of the ICM–90, 1991, 193–215 | MR | Zbl

[5] Starkov A. N., “O kratnom peremeshivanii odnorodnykh potokov”, DAN, 333 (1993), 28–31

[6] Ratner M., “On Raghunathan's measure conjecture”, Ann. Math., 134 (1991), 545–607 | DOI | MR | Zbl

[7] Witte D., “Zero-entropy affine maps on homogeneous spaces”, Amer J. Math., 109 (1987), 927–961 | DOI | MR | Zbl

[8] Mozes S., “Mixing of all orders of Lie group actions”, Invent. Math., 107 (1992), 235–241 | DOI | MR | Zbl

[9] Ratner M., “Rigidity of horocycle flows”, Ann. Math., 115 (1982), 597–614 | DOI | MR | Zbl

[10] Auslender L., Grin L., Khan F., Potoki na odnorodnykh prostranstvakh, Mir, M., 1966

[11] Starkov A. N., “Struktura orbit odnorodnykh potokov i gipoteza Ragunatana”, UMN, 45 (1990), 219–220 | MR | Zbl

[12] Starkov A. N., “O kriterii ergodichnosti $G$-indutsirovannykh potokov”, UMN, 42:3 (1987), 197–198 | MR | Zbl

[13] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977

[14] Moore C. C., “Ergodicity of flows on homogeneous spaces”, Amer. J. Math., 88 (1966), 154–178 | DOI | MR | Zbl