Mutual isomorphisms of translations of a~homogeneous flow
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 98-110

Voir la notice de l'article provenant de la source Math-Net.Ru

Ergodic one-parameter flows $(G/\Gamma,g_{\mathbb R})$ induced by the left action of a subgroup $g_{\mathbb R}\subset G$ on homogeneous spaces of finite volume are considered. Let $\mathscr M\subset{\mathbb R}^+$ be the set of all $t>0$ such that the cascade $(G/\Gamma,g_{t{\mathbb Z}})$ is metrically isomorphic to the cascade $(G/\Gamma,g_{\mathbb Z})$. We prove that either $\mathscr M$ is at most countable or the subgroup $g_\mathscr M$ is horocyclic and $\mathscr M={\mathbb R}^+$. We prove that a metric isomorphism of ergodic quasi-unipotent cascades (or flows) is affine on almost all fibers of a certain natural bundle. The result generalizes Witte's theorem on the affinity of such isomorphisms of cascades with the mixing property; this is applied to the study of the structure of the set $\mathscr M\subset{\mathbb R}^+$. The proof is based on the fundamental Ratner theorem stating that the ergodic measures of unipotent cascades are algebraic.
@article{MZM_1995_58_1_a7,
     author = {A. N. Starkov},
     title = {Mutual isomorphisms of translations of a~homogeneous flow},
     journal = {Matemati\v{c}eskie zametki},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a7/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - Mutual isomorphisms of translations of a~homogeneous flow
JO  - Matematičeskie zametki
PY  - 1995
SP  - 98
EP  - 110
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a7/
LA  - ru
ID  - MZM_1995_58_1_a7
ER  - 
%0 Journal Article
%A A. N. Starkov
%T Mutual isomorphisms of translations of a~homogeneous flow
%J Matematičeskie zametki
%D 1995
%P 98-110
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a7/
%G ru
%F MZM_1995_58_1_a7
A. N. Starkov. Mutual isomorphisms of translations of a~homogeneous flow. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 98-110. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a7/