Integral representation and stabilization of the solution to the Cauchy problem for an equation with two noncommuting operators
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an integral representation for the solution to the Cauchy problem $$ \begin {gathered} \frac{dv}{dt}=\mathbb B_1^2v+\frac 12b(t)(\mathbb B_2\mathbb B_1 +\mathbb B_1\mathbb B_2)v+c(t)\mathbb B_2^2v, \quad v(0)=v_0, \end {gathered} $$ where the operators $\mathbb{B}_1 $ and $\mathbb{B}_2 $ are the infinitesimal generators of strongly continuous groups and $\mathbb B_1\mathbb B_2-\mathbb B_2\mathbb B_1=k\mathbf 1$, $k\ne0$. For the case in which $k=ik_1$, $k_1\in\mathbb R$, it is proved that the solution tends to zero as $t\to+\infty$.
@article{MZM_1995_58_1_a3,
     author = {A. V. Glushak},
     title = {Integral representation and stabilization of the solution to the {Cauchy} problem for an equation with two noncommuting operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a3/}
}
TY  - JOUR
AU  - A. V. Glushak
TI  - Integral representation and stabilization of the solution to the Cauchy problem for an equation with two noncommuting operators
JO  - Matematičeskie zametki
PY  - 1995
SP  - 38
EP  - 47
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a3/
LA  - ru
ID  - MZM_1995_58_1_a3
ER  - 
%0 Journal Article
%A A. V. Glushak
%T Integral representation and stabilization of the solution to the Cauchy problem for an equation with two noncommuting operators
%J Matematičeskie zametki
%D 1995
%P 38-47
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a3/
%G ru
%F MZM_1995_58_1_a3
A. V. Glushak. Integral representation and stabilization of the solution to the Cauchy problem for an equation with two noncommuting operators. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a3/

[1] Hersh R., “Explicit solutions of a class of higher-order abstract Caushy problems”, J. Differential Equations, 2 (1970), 570–579 | DOI | MR

[2] Bragg L. R., “Linear evolution equations that involve products of commutative operators”, SIAM J. Math. Anal., 5 (1974), 327–335 | DOI | MR | Zbl

[3] Steinberg S., “Applications of Lie algebraic formulas of Baker, Campbell, Hausdorf and Zassenhaus to the calculation of explicit solutions of partial differential equations”, J. Differential Equations, 26 (1977), 404–434 | DOI | MR | Zbl

[4] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[5] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | Zbl

[6] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | Zbl

[7] Kuroda T., “Asimptotic behavior of solutions of parabolic equations with unbounded coefficients”, Nagoya Math. J., 37, 5–12 | MR | Zbl

[8] Lu-San Chen, Chen-Chih Yeh, Hung-Yih Chen, “On the behavior of solutions of the Caushy problem for parabolic equations with unbounded coefficients”, Hiroshima Math. J., 1971, no. 1, 145–153 | MR