@article{MZM_1995_58_1_a3,
author = {A. V. Glushak},
title = {Integral representation and stabilization of the solution to the {Cauchy} problem for an equation with two noncommuting operators},
journal = {Matemati\v{c}eskie zametki},
pages = {38--47},
year = {1995},
volume = {58},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a3/}
}
TY - JOUR AU - A. V. Glushak TI - Integral representation and stabilization of the solution to the Cauchy problem for an equation with two noncommuting operators JO - Matematičeskie zametki PY - 1995 SP - 38 EP - 47 VL - 58 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a3/ LA - ru ID - MZM_1995_58_1_a3 ER -
A. V. Glushak. Integral representation and stabilization of the solution to the Cauchy problem for an equation with two noncommuting operators. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a3/
[1] Hersh R., “Explicit solutions of a class of higher-order abstract Caushy problems”, J. Differential Equations, 2 (1970), 570–579 | DOI | MR
[2] Bragg L. R., “Linear evolution equations that involve products of commutative operators”, SIAM J. Math. Anal., 5 (1974), 327–335 | DOI | MR | Zbl
[3] Steinberg S., “Applications of Lie algebraic formulas of Baker, Campbell, Hausdorf and Zassenhaus to the calculation of explicit solutions of partial differential equations”, J. Differential Equations, 26 (1977), 404–434 | DOI | MR | Zbl
[4] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[5] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | Zbl
[6] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | Zbl
[7] Kuroda T., “Asimptotic behavior of solutions of parabolic equations with unbounded coefficients”, Nagoya Math. J., 37, 5–12 | MR | Zbl
[8] Lu-San Chen, Chen-Chih Yeh, Hung-Yih Chen, “On the behavior of solutions of the Caushy problem for parabolic equations with unbounded coefficients”, Hiroshima Math. J., 1971, no. 1, 145–153 | MR