Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation
Matematičeskie zametki, Tome 57 (1995) no. 2, pp. 214-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1995_57_2_a4,
     author = {S. S. Volosivets},
     title = {Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {214--227},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a4/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation
JO  - Matematičeskie zametki
PY  - 1995
SP  - 214
EP  - 227
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a4/
LA  - ru
ID  - MZM_1995_57_2_a4
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation
%J Matematičeskie zametki
%D 1995
%P 214-227
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a4/
%G ru
%F MZM_1995_57_2_a4
S. S. Volosivets. Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation. Matematičeskie zametki, Tome 57 (1995) no. 2, pp. 214-227. http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a4/

[1] Young L. C., “An inequality of the Hölder type, connected with Stielties integration”, Acta Math., 67 (1936), 251–282 | DOI | Zbl

[2] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, Massachusetts J. Math., 3 (1924), 73–94

[3] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izvestiya vuzov. Matematika, 1965, no. 2, 171–187 | MR | Zbl

[4] Volosivets S. S., “Ob $\varepsilon$-entropii i poperechnikakh odnogo kompakta gladkikh funktsii v prostranstve funktsii ogranichennoi $p$-variatsii”, Vestnik MGU. Ser. 1. Matem., mekh., 1992, no. 5, 81–84 | MR | Zbl

[5] Volosivets S. S., “Ob $\varepsilon$-entropii nekotorykh mnozhestv funktsii ogranichennoi $p$-variatsii”, Izvestiya vuzov. Matematika, 1992, no. 2, 83–85 | MR | Zbl

[6] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965

[7] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon $-entropiya i $\varepsilon $-emkost mnozhestva v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR

[8] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976

[9] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 483–522 | MR | Zbl

[10] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[11] Lorentz G. G., “Metric entropy and approximation”, Bull. AMS, 72:6 (1966), 903–927 | DOI | MR

[12] Stechkin S. B., “Ob absolyutnoi skhodimosti ryadov Fure (vtoroe soobschenie)”, Izv. AN SSSR. Ser. matem., 19:4 (1955), 221–246 | MR | Zbl

[13] Lorentz G. G., Approximation of functions, Holt Rinehart, Winston, N.Y., 1966 | Zbl

[14] Terekhin A. P., “Ogranichennaya polugruppa operatorov i nailuchshee priblizhenie”, Differentsialnye uravneniya i vychislitelnaya matematika, no. 2, Izd-vo SGU, Saratov, 1975, 3–28

[15] Golubov B. I., “O nailuchshem priblizhenii $p$-absolyutno nepreryvnykh funktsii”, Nekotorye voprosy teorii funktsii i funktsionalnogo analiza, IV, Izd-vo Tbilisskogo un-ta, Tbilisi, 1988, 85–99