Associator-cyclic bimodules
Matematičeskie zametki, Tome 56 (1994) no. 5, pp. 22-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_5_a2,
     author = {R. Kh. Vakhitov},
     title = {Associator-cyclic bimodules},
     journal = {Matemati\v{c}eskie zametki},
     pages = {22--26},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_5_a2/}
}
TY  - JOUR
AU  - R. Kh. Vakhitov
TI  - Associator-cyclic bimodules
JO  - Matematičeskie zametki
PY  - 1994
SP  - 22
EP  - 26
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_5_a2/
LA  - ru
ID  - MZM_1994_56_5_a2
ER  - 
%0 Journal Article
%A R. Kh. Vakhitov
%T Associator-cyclic bimodules
%J Matematičeskie zametki
%D 1994
%P 22-26
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_5_a2/
%G ru
%F MZM_1994_56_5_a2
R. Kh. Vakhitov. Associator-cyclic bimodules. Matematičeskie zametki, Tome 56 (1994) no. 5, pp. 22-26. http://geodesic.mathdoc.fr/item/MZM_1994_56_5_a2/

[1] Vakhitov R. Kh., “Alternativnyi ideal v slabo alternativnykh koltsakh”, Algebra i logika, 32:2 (1993) | MR | Zbl

[2] Outcalt D., “An extension of the class of alternative rings”, Canad. J. Math., 17:1 (1965), 130–141 | MR | Zbl

[3] Sterling N., “Rings satisfying $(x,y,z) = (y,z,x)$”, Canad. J. Math., 20:4 (1968), 913–918 | MR | Zbl

[4] Kleinfeld E., Widmer L., “Rings satisfying $(x,y,z) = (y,z,x)$”, Communs in Algebra, 17:11 (1989), 2683–2687 | DOI | MR | Zbl

[5] Jacobson N., “Structure of alternative and Jordan bimodules”, Osaka J. Math., 1954, no. 1, 1–11