The reduction principle in stability theory of dynamical and semidynamical systems
Matematičeskie zametki, Tome 56 (1994) no. 3, pp. 134-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_3_a10,
     author = {P. Seibert},
     title = {The reduction principle in stability theory of dynamical and semidynamical systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {134--143},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a10/}
}
TY  - JOUR
AU  - P. Seibert
TI  - The reduction principle in stability theory of dynamical and semidynamical systems
JO  - Matematičeskie zametki
PY  - 1994
SP  - 134
EP  - 143
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a10/
LA  - ru
ID  - MZM_1994_56_3_a10
ER  - 
%0 Journal Article
%A P. Seibert
%T The reduction principle in stability theory of dynamical and semidynamical systems
%J Matematičeskie zametki
%D 1994
%P 134-143
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a10/
%G ru
%F MZM_1994_56_3_a10
P. Seibert. The reduction principle in stability theory of dynamical and semidynamical systems. Matematičeskie zametki, Tome 56 (1994) no. 3, pp. 134-143. http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a10/

[1] Liapounoff A. M., “Problème général de la stabilité du mouvement”, Ann. Fac. Sci. Toulouse, 9:2 (1907), 27–474; Ann. of Math. Studies, 17, Princeton, 1949; original in Russian, Kharkov, 1892 | MR

[2] Pliss V. A., “Printsip svedeniya v teorii ustoichivosti”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1297–1324 | MR | Zbl

[3] Seibert P., “On Stability relative a set and to the whole space”, $5^{th}$ Int. Conf. on Nonlin. Oscillations, V. 2 (1969), Inst. Mat. Akad. Nauk USSR, Kiev, 1970, 448–457

[4] Seibert P., “Relative stability and stability of closed sets”, Sem. Diff. Equations Dynam. Syst., V. II, Lect. Notes Math., 144, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR

[5] Vidyasagar M., “Decomposition techniques for large-scale systems with nonaditive interactions: Stability and stabilizability”, IEEE Trans. Automat. Control, 25 (1980), 773–779 | DOI | MR | Zbl

[6] Sontag E. D., “Remarks on stabilization and input-to-state stability”, Proc. $28^{th}$ Conf. Decision Control (Tampa FL), 1989, 1376–1378 | MR

[7] Seibert P., Suárez R., “Global stabilization of nonlinear cascade systems”, Systems Control Lett., 14 (1990), 347–352 | DOI | MR | Zbl

[8] Ladyzhenskaya O., “Attractors for Semigroups and Evolution Equations”, Accad. Naz. Lincei, Univers. Press, Cambridge, 1991 | Zbl

[9] Kalitin B. S., “K zadache Florio–Seiberta”, Diff. uravneniya, 25:4 (1989), 727–729 | MR | Zbl

[10] Baris Ya. S., Lykova O. B., “Integralnye mnogoobraziya i printsip svedeniya v teorii ustoichivosti, I”, Ukr. matem. zhurn., 41:12 (1989), 1607–1613 | MR

[11] Bhatia N. P., Szegö G. P., Stability Theory of Dynamical Systems, Springer-Verlag, New York–Heidelberg–Berlin, 1970 | Zbl

[12] La Salle J. P., The Stability of Dynamical Systems, Regional Conf. Ser. in Appl. Math., Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976 | MR

[13] Krasovskii N. N., Stability of Motion, Stanford Univ. Press, Stanford, Calif., 1963; Original, Moscow, 1959