@article{MZM_1994_56_3_a0,
author = {M. Z. Berkolaiko and I. Ya. Novikov},
title = {On infinitely smooth compactly supported almost-wavelets},
journal = {Matemati\v{c}eskie zametki},
pages = {3--12},
year = {1994},
volume = {56},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a0/}
}
M. Z. Berkolaiko; I. Ya. Novikov. On infinitely smooth compactly supported almost-wavelets. Matematičeskie zametki, Tome 56 (1994) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a0/
[1] Berkolaiko M. Z., Novikov I. Ya., “O beskonechno gladkikh pochti-vspleskakh s kompaktnym nositelem”, DAN, 326:6 (1992), 935–938 | Zbl
[2] Meyer Y., “Principe d'incertitude, bases hilbertiennes et algèbres d'operateurs”, Sém. Bourbaki, no. 662, 1985–1986, 1–15
[3] Strömberg J.-O., “A modified Franklin system and higher order systems on $\mathbb R^n$ as unconditional bases for Hardy spaces”, Conf. on Harmonic Analysis in honor of A. Zygmund, V. 2, Wadsworth Math. Series, 1981, 475–494
[4] Lemarie P. G., “Ondelettes a localisation exponentiell”, J. Mayj. Pure Appl., 67 (1987), 227–236 | MR
[5] Daubechies I., “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., 41:7 (1988), 909–996 | DOI | MR | Zbl
[6] Lemarie-Rieusset P. G., “Existence de “fonction-pere” pour les ondelettes a support compact”, C.R. Acad. Sci. Paris Ser. 1, 314:1 (1992), 17–19 | MR | Zbl
[7] Meyer Y., Ondelettes et operateurs, Herman, Paris, 1990
[8] Rvachev V. L., Rvachev V. A., Neklassicheskie metody teorii priblizhenii v kraevykh zadachakh, Naukova Dumka, Kiev, 1979
[9] Mallat S., “Multiresolution approximation and wavelet orthonormal bases of $L_2(\mathbb R)$”, Trans. Amer. Math. Soc., 315 (1989), 69–87 | DOI | MR | Zbl