On infinitely smooth compactly supported almost-wavelets
Matematičeskie zametki, Tome 56 (1994) no. 3, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_3_a0,
     author = {M. Z. Berkolaiko and I. Ya. Novikov},
     title = {On infinitely smooth compactly supported almost-wavelets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a0/}
}
TY  - JOUR
AU  - M. Z. Berkolaiko
AU  - I. Ya. Novikov
TI  - On infinitely smooth compactly supported almost-wavelets
JO  - Matematičeskie zametki
PY  - 1994
SP  - 3
EP  - 12
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a0/
LA  - ru
ID  - MZM_1994_56_3_a0
ER  - 
%0 Journal Article
%A M. Z. Berkolaiko
%A I. Ya. Novikov
%T On infinitely smooth compactly supported almost-wavelets
%J Matematičeskie zametki
%D 1994
%P 3-12
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a0/
%G ru
%F MZM_1994_56_3_a0
M. Z. Berkolaiko; I. Ya. Novikov. On infinitely smooth compactly supported almost-wavelets. Matematičeskie zametki, Tome 56 (1994) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a0/

[1] Berkolaiko M. Z., Novikov I. Ya., “O beskonechno gladkikh pochti-vspleskakh s kompaktnym nositelem”, DAN, 326:6 (1992), 935–938 | Zbl

[2] Meyer Y., “Principe d'incertitude, bases hilbertiennes et algèbres d'operateurs”, Sém. Bourbaki, no. 662, 1985–1986, 1–15

[3] Strömberg J.-O., “A modified Franklin system and higher order systems on $\mathbb R^n$ as unconditional bases for Hardy spaces”, Conf. on Harmonic Analysis in honor of A. Zygmund, V. 2, Wadsworth Math. Series, 1981, 475–494

[4] Lemarie P. G., “Ondelettes a localisation exponentiell”, J. Mayj. Pure Appl., 67 (1987), 227–236 | MR

[5] Daubechies I., “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., 41:7 (1988), 909–996 | DOI | MR | Zbl

[6] Lemarie-Rieusset P. G., “Existence de “fonction-pere” pour les ondelettes a support compact”, C.R. Acad. Sci. Paris Ser. 1, 314:1 (1992), 17–19 | MR | Zbl

[7] Meyer Y., Ondelettes et operateurs, Herman, Paris, 1990

[8] Rvachev V. L., Rvachev V. A., Neklassicheskie metody teorii priblizhenii v kraevykh zadachakh, Naukova Dumka, Kiev, 1979

[9] Mallat S., “Multiresolution approximation and wavelet orthonormal bases of $L_2(\mathbb R)$”, Trans. Amer. Math. Soc., 315 (1989), 69–87 | DOI | MR | Zbl