Modular hypothesis and Fermat's last theorem
Matematičeskie zametki, Tome 55 (1994) no. 2, pp. 80-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_55_2_a5,
     author = {V. A. Kolyvagin},
     title = {Modular hypothesis and {Fermat's} last theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {80--82},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_2_a5/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
TI  - Modular hypothesis and Fermat's last theorem
JO  - Matematičeskie zametki
PY  - 1994
SP  - 80
EP  - 82
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_55_2_a5/
LA  - ru
ID  - MZM_1994_55_2_a5
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%T Modular hypothesis and Fermat's last theorem
%J Matematičeskie zametki
%D 1994
%P 80-82
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_55_2_a5/
%G ru
%F MZM_1994_55_2_a5
V. A. Kolyvagin. Modular hypothesis and Fermat's last theorem. Matematičeskie zametki, Tome 55 (1994) no. 2, pp. 80-82. http://geodesic.mathdoc.fr/item/MZM_1994_55_2_a5/

[1] Kolyvagin V. A., “On the Mordell–Weil and the Shafarevich–Tate group of modular elliptic curves”, Proceedings of ICM–90, V. 1 (Kyoto), The Mathematical Society of Japan, 1991, 429–436 | MR | Zbl

[2] Frey G., “Links between solutions of $A-B=C$ and elliptic curves”, Lect. Notes in Math., 1380, 1989, 31–62 | MR | Zbl

[3] Algebra i teoriya chisel s prilozheniyami, Matematika, novoe v zarubezhnoi nauke, 43, Mir, M., 1987 | Zbl

[4] Ribet K. A., “On modular representation of $G_a$ arasing from modular forms”, Invent. Math., 100 (1990), 431–435 | DOI | MR

[5] Kolyvagin V. A., “Euler systems”, The Grothendieck Festschrift, V. 2, Proc. in Math., 87, 1991, 435–483 | MR

[6] Flach M., “A finiteness theorem for the symmetric square of an elliptic curve”, Invent. Math., 109 (1992), 307–327 | DOI | MR | Zbl