A class of twisted products of maps of an interval
Matematičeskie zametki, Tome 54 (1993) no. 3, pp. 18-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_3_a1,
     author = {L. S. Efremova},
     title = {A class of twisted products of maps of an interval},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a1/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - A class of twisted products of maps of an interval
JO  - Matematičeskie zametki
PY  - 1993
SP  - 18
EP  - 33
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a1/
LA  - ru
ID  - MZM_1993_54_3_a1
ER  - 
%0 Journal Article
%A L. S. Efremova
%T A class of twisted products of maps of an interval
%J Matematičeskie zametki
%D 1993
%P 18-33
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a1/
%G ru
%F MZM_1993_54_3_a1
L. S. Efremova. A class of twisted products of maps of an interval. Matematičeskie zametki, Tome 54 (1993) no. 3, pp. 18-33. http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a1/

[1] Efremova L. S., “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, In-t matem. AN USSR, Kiev, 1990, 16–25

[2] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | Zbl

[3] Kolyada S. F., Sharkovsky A. N., “On topological dynamics of triangular maps of the plane”, European Conference on iteration theory (Austria, 10–16 Sept. 1989)

[4] Yakobson M. V., “O gladkikh otobrazheniyakh okruzhnosti v sebya”, Matem. sb., 85:2 (1971), 163–188 | MR | Zbl

[5] Sharkovskii A. N., “O tsiklakh nepreryvnogo otobrazheniya”, Ukr. mat. zhurn., 17:3 (1965), 104–111 | MR

[6] Sharkovskii A. N., “Prityagivayuschie mnozhestva, ne soderzhaschie tsiklov”, Ukr. mat. zhurn., 20:1 (1968), 136–142 | MR

[7] Sharkovskii A. N., “Otobrazhenie s nulevoi topologicheskoi entropiei, imeyuschee kontinuum kantorovykh minimalnykh mnozhestv”, Dinamicheskie sistemy i turbulentnost, In-t matem. AN USSR, Kiev, 1989, 109–117 | MR

[8] Sharkovskii A. N., “O probleme izomorfizma dinamicheskikh sistem”, Kachestvennye metody, Trudy pyatoi mezhdunarodnoi konferentsii po nelineinym kolebaniyam, T. 2, In-t matem. AN USSR, Kiev, 1970, 541–544

[9] Block L., “Homoclinic points of mappings of the interval”, Proc. Amer. Math. Soc., 72:3 (1978), 576–580 | DOI | MR | Zbl

[10] Sharkovskii A. N., “Deskriptivnye otsenki mnozhestva gomoklinicheskikh tochek dinamicheskoi sistemy”, Differentsialno-raznostnye uravneniya i zadachi matematicheskoi fiziki, In-t matem. AN USSR, Kiev, 1984, 109–115 | MR

[11] Kloeden E. P., “On Sharkovsky's Cycle Coexistence Ordering”, Bull. Austral. Math. Soc., 20 (1979), 171–177 | DOI | MR

[12] Sharkovskii A. N., “Nekotorye zadachi teorii obyknovennykh differentsialnykh uravnenii”, UMN, 38:5 (1983), 172

[13] Efremova L. S., “Rassloennye dinamicheskie sistemy s nepustym mnozhestvom periodicheskikh tochek”, Sedmaya vsesoyuznaya konferentsiya po kachestvennoi teorii differentsialnykh uravnenii (Riga, 3–7 apr. 1989 g.), Riga, 1989, 92

[14] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966

[15] Anosov D. V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Kachestvennye metody, Trudy pyatoi mezhdunarodnoi konferentsii po nelineinym kolebaniyam, T. 2, In-t matematiki AN USSR, Kiev, 1970, 39–45

[16] Block L., Franke J. E., “The chain recurrent set, attractors, explosions”, Ergod. Theory and Dynam. Syst., 5 (1985), 321–327 | MR | Zbl

[17] Sharkovsky A. N., “How complicated can be one dimensional systems: descriptive estimates of sets”, Dyn. Syst. and Ergod. Theory, Banach Centre Publ., 23, PWN, Warszawa, 1989, 447–453