Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_54_3_a1, author = {L. S. Efremova}, title = {A class of twisted products of maps of an interval}, journal = {Matemati\v{c}eskie zametki}, pages = {18--33}, publisher = {mathdoc}, volume = {54}, number = {3}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a1/} }
L. S. Efremova. A class of twisted products of maps of an interval. Matematičeskie zametki, Tome 54 (1993) no. 3, pp. 18-33. http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a1/
[1] Efremova L. S., “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, In-t matem. AN USSR, Kiev, 1990, 16–25
[2] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | Zbl
[3] Kolyada S. F., Sharkovsky A. N., “On topological dynamics of triangular maps of the plane”, European Conference on iteration theory (Austria, 10–16 Sept. 1989)
[4] Yakobson M. V., “O gladkikh otobrazheniyakh okruzhnosti v sebya”, Matem. sb., 85:2 (1971), 163–188 | MR | Zbl
[5] Sharkovskii A. N., “O tsiklakh nepreryvnogo otobrazheniya”, Ukr. mat. zhurn., 17:3 (1965), 104–111 | MR
[6] Sharkovskii A. N., “Prityagivayuschie mnozhestva, ne soderzhaschie tsiklov”, Ukr. mat. zhurn., 20:1 (1968), 136–142 | MR
[7] Sharkovskii A. N., “Otobrazhenie s nulevoi topologicheskoi entropiei, imeyuschee kontinuum kantorovykh minimalnykh mnozhestv”, Dinamicheskie sistemy i turbulentnost, In-t matem. AN USSR, Kiev, 1989, 109–117 | MR
[8] Sharkovskii A. N., “O probleme izomorfizma dinamicheskikh sistem”, Kachestvennye metody, Trudy pyatoi mezhdunarodnoi konferentsii po nelineinym kolebaniyam, T. 2, In-t matem. AN USSR, Kiev, 1970, 541–544
[9] Block L., “Homoclinic points of mappings of the interval”, Proc. Amer. Math. Soc., 72:3 (1978), 576–580 | DOI | MR | Zbl
[10] Sharkovskii A. N., “Deskriptivnye otsenki mnozhestva gomoklinicheskikh tochek dinamicheskoi sistemy”, Differentsialno-raznostnye uravneniya i zadachi matematicheskoi fiziki, In-t matem. AN USSR, Kiev, 1984, 109–115 | MR
[11] Kloeden E. P., “On Sharkovsky's Cycle Coexistence Ordering”, Bull. Austral. Math. Soc., 20 (1979), 171–177 | DOI | MR
[12] Sharkovskii A. N., “Nekotorye zadachi teorii obyknovennykh differentsialnykh uravnenii”, UMN, 38:5 (1983), 172
[13] Efremova L. S., “Rassloennye dinamicheskie sistemy s nepustym mnozhestvom periodicheskikh tochek”, Sedmaya vsesoyuznaya konferentsiya po kachestvennoi teorii differentsialnykh uravnenii (Riga, 3–7 apr. 1989 g.), Riga, 1989, 92
[14] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966
[15] Anosov D. V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Kachestvennye metody, Trudy pyatoi mezhdunarodnoi konferentsii po nelineinym kolebaniyam, T. 2, In-t matematiki AN USSR, Kiev, 1970, 39–45
[16] Block L., Franke J. E., “The chain recurrent set, attractors, explosions”, Ergod. Theory and Dynam. Syst., 5 (1985), 321–327 | MR | Zbl
[17] Sharkovsky A. N., “How complicated can be one dimensional systems: descriptive estimates of sets”, Dyn. Syst. and Ergod. Theory, Banach Centre Publ., 23, PWN, Warszawa, 1989, 447–453