Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_53_6_a10, author = {I. S. Rakhimov}, title = {Critical branching processes with infinite variance and increasing immigration}, journal = {Matemati\v{c}eskie zametki}, pages = {97--107}, publisher = {mathdoc}, volume = {53}, number = {6}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a10/} }
I. S. Rakhimov. Critical branching processes with infinite variance and increasing immigration. Matematičeskie zametki, Tome 53 (1993) no. 6, pp. 97-107. http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a10/
[1] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | Zbl
[2] Seneta E., “An explicit-limit theorem for the critical Galton–Watson process with immigration”, J. Roy. Statist. Soc., 32:1 (1970), 149–152 | MR | Zbl
[3] Formanov Sh. K., Ibragimov R., “Predelnaya teorema dlya vetvyaschikhsya protsessov s immigratsiei v kriticheskom sluchae”, Voprosy matematiki, 394, TashGU, Tashkent, 1971, 176–184
[4] Badalbaev I. S., Rakhimov I., “Predelnye teoremy dlya kriticheskikh protsessov Galtona–Vatsona s immigratsiei ubyvayuschei intensivnosti”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1978, no. 1, 9–14 | MR
[5] Rakhimov I., “O vetvyaschikhsya protsessakh s rastuschei immigratsiei”, Dokl. AN UzSSR, 1981, no. 1, 3–5 | MR | Zbl
[6] Rakhimov I., “Kriticheskie protsessy s beskonechnoi dispersiei i ubyvayuschei immigratsiei”, Teor. veroyatn. i ee primen., 31:1 (1986), 98–110 | MR | Zbl
[7] Narris T., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966
[8] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | Zbl
[9] Slack R., “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlich, und Verw. Geb., 9:2 (1968), 139–145 | DOI | MR | Zbl