Interdependence between carathйodory numbers and $n$-distributivity in lattices
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 44-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a lattice $L$ with zero a subset $F\subseteq L$ is called a (lower) spanning tree if for any y $y\in L/\{0\}$ there exists $x\in F$ such that $0$. The main goal of the present note is a proof of two theorems, one of which is the following: THEOREM 1. Suppose that the spanning tree of an algebraic lattice $L$ consists of completely join-irreducible elements and that each element $x\in L$ is the union of some subset (in general, infinite) of $F$. Then the Caratheodory number of $L$ relative to the spanning tree $F$ is equal to the distributivity number of this lattice. The second theorem states the same result as the first, though under different conditions on the lattice $L$ and the spanning tree $F$.
@article{MZM_1992_52_3_a4,
     author = {A. P. Zolotarev},
     title = {Interdependence between carath{\cyrishrt}odory numbers and $n$-distributivity in lattices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {44--47},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a4/}
}
TY  - JOUR
AU  - A. P. Zolotarev
TI  - Interdependence between carathйodory numbers and $n$-distributivity in lattices
JO  - Matematičeskie zametki
PY  - 1992
SP  - 44
EP  - 47
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a4/
LA  - ru
ID  - MZM_1992_52_3_a4
ER  - 
%0 Journal Article
%A A. P. Zolotarev
%T Interdependence between carathйodory numbers and $n$-distributivity in lattices
%J Matematičeskie zametki
%D 1992
%P 44-47
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a4/
%G ru
%F MZM_1992_52_3_a4
A. P. Zolotarev. Interdependence between carathйodory numbers and $n$-distributivity in lattices. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 44-47. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a4/