Multiple solvability of certain elliptic problems with critical nonlinearity exponents
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 51-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the problem $$ \sum_{i=1}^N\nabla_i(|\nabla u|^{p-2}\nabla_iu)+|u|^{p^*-2}u+\lambda|u|^{q-2}u=0 \text{ in } \Omega, \quad u=0 \text{ on } \partial\Omega, $$ where $\Omega\subset\mathbf{R}^N$ a singly-connected region with an “odd” boundary, $N>p$, and $p^*=Np/(N-p)$ is a critical Sobolev exponent, has, under the appropriate conditions on $\lambda$, $q$ and $N$, no less than $(2N+2)$ nontrivial solutions in $\mathring{W}_{p^1}(\Omega)$.
@article{MZM_1992_52_1_a7,
     author = {I. A. Kuzin},
     title = {Multiple solvability of certain elliptic problems with critical nonlinearity exponents},
     journal = {Matemati\v{c}eskie zametki},
     pages = {51--56},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a7/}
}
TY  - JOUR
AU  - I. A. Kuzin
TI  - Multiple solvability of certain elliptic problems with critical nonlinearity exponents
JO  - Matematičeskie zametki
PY  - 1992
SP  - 51
EP  - 56
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a7/
LA  - ru
ID  - MZM_1992_52_1_a7
ER  - 
%0 Journal Article
%A I. A. Kuzin
%T Multiple solvability of certain elliptic problems with critical nonlinearity exponents
%J Matematičeskie zametki
%D 1992
%P 51-56
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a7/
%G ru
%F MZM_1992_52_1_a7
I. A. Kuzin. Multiple solvability of certain elliptic problems with critical nonlinearity exponents. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 51-56. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a7/