Estimating the diameter of one class of functions in~$L_2$
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
Let
\begin{gather*}
f(x)\in L_2[-1,1], \quad \|f\|=\sqrt{\int^1_{-1}|f(x)|^z\,dx},
\\
f_h(x)=\frac1\pi\int_0^{\pi}f(x\cos h+\sqrt{1-x^2}\sin h\cos\pi)\,d\theta, \quad h>0,
\\
\widetilde{\omega}(f^{(r)},t)=\sup_{0}\|\sqrt{(1-x^2)^r}[f^{(r)}(x)-f_h^{(r)}(x)]\|,
\\
\widetilde{W}_{\omega}^r=\{f\in L_2[-1,1]:\widetilde{\omega}(f^{(r)};t)\leqslant c\omega(t)\},
\end{gather*}
where $r=0,1,2,\dots,\omega(t)$ is a given modulus of continuity, and $c>0$ is a constant. The estimate is piroved, where $d_n(\widetilde{W}_{\omega}^r;L_2[-1,1])\asymp n^{-r}\omega(n^{-r})$ ($n>r$) is the Kolmogorov $n$-diameter of the set $\widetilde{W}_{\omega}^r$ in the space $L_2[-1,1]$.
@article{MZM_1992_52_1_a0,
author = {A. A. Abilov},
title = {Estimating the diameter of one class of functions in~$L_2$},
journal = {Matemati\v{c}eskie zametki},
pages = {3--8},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a0/}
}
A. A. Abilov. Estimating the diameter of one class of functions in~$L_2$. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a0/