Approximation of the function sign x in the uniform and integral metrics by means of rational functions
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 825-838
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates are obtained for the nonsymmetric deviations $R_n[\operatorname{sign}x]$ and $R_n[\operatorname{sign}x]_L$ of the function $\operatorname{sign}x$ from rational functions of degree $\le n$, respectively, in the metric
$$
C([-1,-\delta]\cup[\delta,1]),\quad0\delta\exp(-\alpha\sqrt{n}),\quad\alpha>0,
$$
and in the metric $L[-1,1]$:
\begin{gather*}
R_n[\operatorname{sign}x]\asymp\exp\{-\pi^2n/(2\ln1/\delta)\},\quad n\to\infty,\\
10^{-3}n^{-3}\exp(-2\pi\sqrt{n})[\operatorname{sign}x]_L\exp(-\pi\sqrt{n/2}+150).
\end{gather*}
is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).
@article{MZM_1978_23_6_a4,
author = {S. A. Agahanov and N. Sh. Zagirov},
title = {Approximation of the function sign x in the uniform and integral metrics by means of rational functions},
journal = {Matemati\v{c}eskie zametki},
pages = {825--838},
publisher = {mathdoc},
volume = {23},
number = {6},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/}
}
TY - JOUR AU - S. A. Agahanov AU - N. Sh. Zagirov TI - Approximation of the function sign x in the uniform and integral metrics by means of rational functions JO - Matematičeskie zametki PY - 1978 SP - 825 EP - 838 VL - 23 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/ LA - ru ID - MZM_1978_23_6_a4 ER -
%0 Journal Article %A S. A. Agahanov %A N. Sh. Zagirov %T Approximation of the function sign x in the uniform and integral metrics by means of rational functions %J Matematičeskie zametki %D 1978 %P 825-838 %V 23 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/ %G ru %F MZM_1978_23_6_a4
S. A. Agahanov; N. Sh. Zagirov. Approximation of the function sign x in the uniform and integral metrics by means of rational functions. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 825-838. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/