Approximation of the function sign x in the uniform and integral metrics by means of rational functions
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 825-838.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates are obtained for the nonsymmetric deviations $R_n[\operatorname{sign}x]$ and $R_n[\operatorname{sign}x]_L$ of the function $\operatorname{sign}x$ from rational functions of degree $\le n$, respectively, in the metric $$ C([-1,-\delta]\cup[\delta,1]),\quad0\delta\exp(-\alpha\sqrt{n}),\quad\alpha>0, $$ and in the metric $L[-1,1]$: \begin{gather*} R_n[\operatorname{sign}x]\asymp\exp\{-\pi^2n/(2\ln1/\delta)\},\quad n\to\infty,\\ 10^{-3}n^{-3}\exp(-2\pi\sqrt{n})[\operatorname{sign}x]_L\exp(-\pi\sqrt{n/2}+150). \end{gather*} is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).
@article{MZM_1978_23_6_a4,
     author = {S. A. Agahanov and N. Sh. Zagirov},
     title = {Approximation of the function sign x in the uniform and integral metrics by means of rational functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--838},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/}
}
TY  - JOUR
AU  - S. A. Agahanov
AU  - N. Sh. Zagirov
TI  - Approximation of the function sign x in the uniform and integral metrics by means of rational functions
JO  - Matematičeskie zametki
PY  - 1978
SP  - 825
EP  - 838
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/
LA  - ru
ID  - MZM_1978_23_6_a4
ER  - 
%0 Journal Article
%A S. A. Agahanov
%A N. Sh. Zagirov
%T Approximation of the function sign x in the uniform and integral metrics by means of rational functions
%J Matematičeskie zametki
%D 1978
%P 825-838
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/
%G ru
%F MZM_1978_23_6_a4
S. A. Agahanov; N. Sh. Zagirov. Approximation of the function sign x in the uniform and integral metrics by means of rational functions. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 825-838. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/