Approximation of the function sign x in the uniform and integral metrics by means of rational functions
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 825-838
Cet article a éte moissonné depuis la source Math-Net.Ru
Estimates are obtained for the nonsymmetric deviations $R_n[\operatorname{sign}x]$ and $R_n[\operatorname{sign}x]_L$ of the function $\operatorname{sign}x$ from rational functions of degree $\le n$, respectively, in the metric $$ C([-1,-\delta]\cup[\delta,1]),\quad0<\delta<\exp(-\alpha\sqrt{n}),\quad\alpha>0, $$ and in the metric $L[-1,1]$: \begin{gather*} R_n[\operatorname{sign}x]\asymp\exp\{-\pi^2n/(2\ln1/\delta)\},\quad n\to\infty,\\ 10^{-3}n^{-3}\exp(-2\pi\sqrt{n})<R_n[\operatorname{sign}x]_L<\exp(-\pi\sqrt{n/2}+150). \end{gather*} is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).
@article{MZM_1978_23_6_a4,
author = {S. A. Agahanov and N. Sh. Zagirov},
title = {Approximation of the function sign x in the uniform and integral metrics by means of rational functions},
journal = {Matemati\v{c}eskie zametki},
pages = {825--838},
year = {1978},
volume = {23},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/}
}
TY - JOUR AU - S. A. Agahanov AU - N. Sh. Zagirov TI - Approximation of the function sign x in the uniform and integral metrics by means of rational functions JO - Matematičeskie zametki PY - 1978 SP - 825 EP - 838 VL - 23 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/ LA - ru ID - MZM_1978_23_6_a4 ER -
S. A. Agahanov; N. Sh. Zagirov. Approximation of the function sign x in the uniform and integral metrics by means of rational functions. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 825-838. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a4/