New formula for $\ln(e^Ae^B)$ in terms of commutators of $A$ and $B$
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 817-824.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the formula $$ \ln(e^Be^A)=\int_0^t\psi(e^{-\tau ad_A}e^{-\tau ad_B})e^{-\tau ad_A}\,d\tau(A+B), $$ where $\psi(x)=(\ln x)/(x-1)$; here $A$ and $B$ are elements of a. finite-dimensional Lie algebra which satisfy certain conditions. This formula enables us, in particular, to give a simple proof of the Campbell–Hausdorff theorem. We also give a generalization of the formula to the case of an arbitrary number of factors.
@article{MZM_1978_23_6_a3,
     author = {M. V. Mosolova},
     title = {New formula for $\ln(e^Ae^B)$ in terms of commutators of $A$ and $B$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {817--824},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a3/}
}
TY  - JOUR
AU  - M. V. Mosolova
TI  - New formula for $\ln(e^Ae^B)$ in terms of commutators of $A$ and $B$
JO  - Matematičeskie zametki
PY  - 1978
SP  - 817
EP  - 824
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a3/
LA  - ru
ID  - MZM_1978_23_6_a3
ER  - 
%0 Journal Article
%A M. V. Mosolova
%T New formula for $\ln(e^Ae^B)$ in terms of commutators of $A$ and $B$
%J Matematičeskie zametki
%D 1978
%P 817-824
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a3/
%G ru
%F MZM_1978_23_6_a3
M. V. Mosolova. New formula for $\ln(e^Ae^B)$ in terms of commutators of $A$ and $B$. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 817-824. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a3/