Distribution of the number of nonappearing lengths of cycles in a~random mapping
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 895-898.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-to-one random mappings of the set $\{1,2,\dots,n\}$ onto itself are considered. Limit theorems are proved for the quantities $\mu_i$, $0\le i\le n$, $\max\limits_{0\le i\le n}\mu_i$, $\min\limits_{0\le i\le n}\mu_i$, where $\mu_i$ is the number of 0leilen components of the vector ($\alpha_1,\alpha_2,\dots,\alpha_n$) which are equal to $i$, $0\le i\le n$ and $\alpha_r$ is the number of components of dimension $r$ of the random mapping.
@article{MZM_1978_23_6_a12,
     author = {A. S. Ambrosimov},
     title = {Distribution of the number of nonappearing lengths of cycles in a~random mapping},
     journal = {Matemati\v{c}eskie zametki},
     pages = {895--898},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a12/}
}
TY  - JOUR
AU  - A. S. Ambrosimov
TI  - Distribution of the number of nonappearing lengths of cycles in a~random mapping
JO  - Matematičeskie zametki
PY  - 1978
SP  - 895
EP  - 898
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a12/
LA  - ru
ID  - MZM_1978_23_6_a12
ER  - 
%0 Journal Article
%A A. S. Ambrosimov
%T Distribution of the number of nonappearing lengths of cycles in a~random mapping
%J Matematičeskie zametki
%D 1978
%P 895-898
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a12/
%G ru
%F MZM_1978_23_6_a12
A. S. Ambrosimov. Distribution of the number of nonappearing lengths of cycles in a~random mapping. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 895-898. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a12/