Upper bound for the product of nonhomogeneous linear forms
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 789-797
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for any unimodular lattice $\Lambda$ with homogeneous minimum $L>0$ and any set of real numbers $\alpha_1,\alpha_2,\dots,\alpha_n$ there exists a point ($y_1, y_2,\dots,y_n$) of $\Lambda$ such that
$$
\prod_{1\le i\le n}|y_i+\alpha_i|\le2^{-n/2_\gamma n}(1+3L^{8/(3^n)/(\gamma^{2/3}-2L^{8/(3^n)})})^{-n/2},
$$
where $\gamma^n=n^{n/(n-1)}$.
@article{MZM_1978_23_6_a1,
author = {K. Bakiev and A. S. Pen and B. F. Skubenko},
title = {Upper bound for the product of nonhomogeneous linear forms},
journal = {Matemati\v{c}eskie zametki},
pages = {789--797},
publisher = {mathdoc},
volume = {23},
number = {6},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a1/}
}
K. Bakiev; A. S. Pen; B. F. Skubenko. Upper bound for the product of nonhomogeneous linear forms. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 789-797. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a1/