Mean value of Weyl sums
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 785-788
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose $P$, $n$, $k$, $\tau$ are integers, $P\ge1$, $n\ge2$, $k\ge n(\tau+1)$, $\tau\ge0$. Put
$$
J_{k,n}(P)=\int_0^1\dots\int_0^1\biggl|\sum_{x=1}^Pe^{2\pi i(\alpha_1x+\dots+\alpha_nx^n)}\biggr|^{2k}\,d\alpha_1\dots d\alpha_n.
$$
Then
$$
J_{k,n}\le n!k^{2n\tau}n^{\sigma n^2u}\cdot2^{2n^2\tau}P^{2k-\Delta},
$$
where
\begin{gather*}
u=u_\tau=\min(n+1,\tau)
\\
\Delta=\Delta_t=n(n+1)/2-(1-1/n)^{\tau+1}n^2/2.
\end{gather*}
@article{MZM_1978_23_6_a0,
author = {G. I. Arkhipov},
title = {Mean value of {Weyl} sums},
journal = {Matemati\v{c}eskie zametki},
pages = {785--788},
publisher = {mathdoc},
volume = {23},
number = {6},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a0/}
}
G. I. Arkhipov. Mean value of Weyl sums. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 785-788. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a0/