Mean value of Weyl sums
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 785-788.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose $P$, $n$, $k$, $\tau$ are integers, $P\ge1$, $n\ge2$, $k\ge n(\tau+1)$, $\tau\ge0$. Put $$ J_{k,n}(P)=\int_0^1\dots\int_0^1\biggl|\sum_{x=1}^Pe^{2\pi i(\alpha_1x+\dots+\alpha_nx^n)}\biggr|^{2k}\,d\alpha_1\dots d\alpha_n. $$ Then $$ J_{k,n}\le n!k^{2n\tau}n^{\sigma n^2u}\cdot2^{2n^2\tau}P^{2k-\Delta}, $$ where \begin{gather*} u=u_\tau=\min(n+1,\tau) \\ \Delta=\Delta_t=n(n+1)/2-(1-1/n)^{\tau+1}n^2/2. \end{gather*}
@article{MZM_1978_23_6_a0,
     author = {G. I. Arkhipov},
     title = {Mean value of {Weyl} sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {785--788},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a0/}
}
TY  - JOUR
AU  - G. I. Arkhipov
TI  - Mean value of Weyl sums
JO  - Matematičeskie zametki
PY  - 1978
SP  - 785
EP  - 788
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a0/
LA  - ru
ID  - MZM_1978_23_6_a0
ER  - 
%0 Journal Article
%A G. I. Arkhipov
%T Mean value of Weyl sums
%J Matematičeskie zametki
%D 1978
%P 785-788
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a0/
%G ru
%F MZM_1978_23_6_a0
G. I. Arkhipov. Mean value of Weyl sums. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 785-788. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a0/