Problem of instability in the first approximation
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 721-723.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a Banach space, $A$ be a continuous linear operator such that $\sigma(A)\cap\{\lambda: \mathrm{Re}\,\lambda>0\}\ne\varnothing$, and $F(t, x)$ be a continuous function on $[0,\infty)\times E$ satisfying the condition $||F(t, x)||\leqslant q||x||$ ($q=\mathrm{const}$). An example of a system ${dx}/{dt}=Ax+F(t, x)$ is given which has an exponentially stable zero solution for certain $F(t, x)$ with arbitrarily small $q$.
@article{MZM_1978_23_5_a7,
     author = {V. E. Slyusarchuk},
     title = {Problem of instability in the first approximation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {721--723},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a7/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Problem of instability in the first approximation
JO  - Matematičeskie zametki
PY  - 1978
SP  - 721
EP  - 723
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a7/
LA  - ru
ID  - MZM_1978_23_5_a7
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Problem of instability in the first approximation
%J Matematičeskie zametki
%D 1978
%P 721-723
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a7/
%G ru
%F MZM_1978_23_5_a7
V. E. Slyusarchuk. Problem of instability in the first approximation. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 721-723. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a7/