Best approximation and de la Vallée–Poussin sums
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 671-683
Cet article a éte moissonné depuis la source Math-Net.Ru
For the class $C_\varepsilon=\{f\in C_{2\pi}: E_n[f]\leqslant\varepsilon_n, n\leqslant\mathbf{Z}_+\}$, where $\{\varepsilon_n\}_{n\in\mathbf{Z}_+}$ is a sequence of numbers tending monotonically to zero, we establish the following precise (in the sense of order) bounds for the error of approximation by de la Vallée–Poussin sums: $$ c_1\sum_{j=n}^{2(n+l)}\frac{\varepsilon_j}{l+j-n+1}\leqslant\sup_{f\in C_\varepsilon}||f-V_{n,l}(f)||_C \leqslant c_2\sum_{j=n}^{2(n+l)}\frac{\varepsilon_j}{l+j-n+1}\qquad(n\in\mathrm{N}),\eqno{(1)} $$ where $c_1$ and $c_2$ are constants which do not depend on $n$ or $l$. This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory (Bonn, 1976) and permits a unified treatment of many earlier results obtained only for special classes $C_\varepsilon$ of (differentiable) functions. The result (1) substantially refines the estimate (see [1]) $$ ||V_{n,l}(f)-f||_C=O(\log n/(l+1)+1)E_n[f]\qquad(n\to\infty)\eqno{(2)} $$ and includes as particular cases the estimates of approximations by Fejér sums (see [2]) and by Fourier sums (see [3]).
@article{MZM_1978_23_5_a3,
author = {W. Dahmen},
title = {Best approximation and de la {Vall\'ee{\textendash}Poussin} sums},
journal = {Matemati\v{c}eskie zametki},
pages = {671--683},
year = {1978},
volume = {23},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a3/}
}
W. Dahmen. Best approximation and de la Vallée–Poussin sums. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 671-683. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a3/