Best approximation and de la Vall\'ee--Poussin sums
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 671-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the class $C_\varepsilon=\{f\in C_{2\pi}: E_n[f]\leqslant\varepsilon_n, n\leqslant\mathbf{Z}_+\}$, where $\{\varepsilon_n\}_{n\in\mathbf{Z}_+}$ is a sequence of numbers tending monotonically to zero, we establish the following precise (in the sense of order) bounds for the error of approximation by de la Vallée–Poussin sums: $$ c_1\sum_{j=n}^{2(n+l)}\frac{\varepsilon_j}{l+j-n+1}\leqslant\sup_{f\in C_\varepsilon}||f-V_{n,l}(f)||_C \leqslant c_2\sum_{j=n}^{2(n+l)}\frac{\varepsilon_j}{l+j-n+1}\qquad(n\in\mathrm{N}),\eqno{(1)} $$ where $c_1$ and $c_2$ are constants which do not depend on $n$ or $l$. This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory (Bonn, 1976) and permits a unified treatment of many earlier results obtained only for special classes $C_\varepsilon$ of (differentiable) functions. The result (1) substantially refines the estimate (see [1]) $$ ||V_{n,l}(f)-f||_C=O(\log n/(l+1)+1)E_n[f]\qquad(n\to\infty)\eqno{(2)} $$ and includes as particular cases the estimates of approximations by Fejér sums (see [2]) and by Fourier sums (see [3]).
@article{MZM_1978_23_5_a3,
     author = {W. Dahmen},
     title = {Best approximation and de la {Vall\'ee--Poussin} sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {671--683},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a3/}
}
TY  - JOUR
AU  - W. Dahmen
TI  - Best approximation and de la Vall\'ee--Poussin sums
JO  - Matematičeskie zametki
PY  - 1978
SP  - 671
EP  - 683
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a3/
LA  - ru
ID  - MZM_1978_23_5_a3
ER  - 
%0 Journal Article
%A W. Dahmen
%T Best approximation and de la Vall\'ee--Poussin sums
%J Matematičeskie zametki
%D 1978
%P 671-683
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a3/
%G ru
%F MZM_1978_23_5_a3
W. Dahmen. Best approximation and de la Vall\'ee--Poussin sums. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 671-683. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a3/