Kernels of bounded sequences
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 537-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are obtained for a regular positive matrix to leave unchanged the kernel of a given bounded sequence. Let $\|a_{nk}\|$ be a positive $T$-matrix, let $\{S_n\}$ be a bounded sequence of real numbers, and let $\tau_n=\sum_{k=0}^\infty a_{nk}S_k$. In order that $\underline{S}=\varliminf\limits_{n\to\infty}S_n=\varliminf\limits_{n\to\infty}\tau_n(\overline{S}=\varlimsup\limits_{n\to\infty}S_n=\varlimsup\limits_{n\to\infty}\tau_n)$, it is necessary and sufficient that, for any $\varepsilon>0$, there exist sequences $\{m_k\}$ and $\{\nu_j\}$ such that $|S_{\nu_i}-\underline{S}|\le\varepsilon$ ($|S_{\nu_i}-\overline{S}|\le\varepsilon$) $(i=1,2,\dots)$ и $\sum_{i=1}^\infty a_{m_k\nu_i}\to1$ $(k\to\infty)$.
@article{MZM_1978_23_4_a5,
     author = {N. A. Davydov and G. A. Mikhalin},
     title = {Kernels of bounded sequences},
     journal = {Matemati\v{c}eskie zametki},
     pages = {537--550},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a5/}
}
TY  - JOUR
AU  - N. A. Davydov
AU  - G. A. Mikhalin
TI  - Kernels of bounded sequences
JO  - Matematičeskie zametki
PY  - 1978
SP  - 537
EP  - 550
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a5/
LA  - ru
ID  - MZM_1978_23_4_a5
ER  - 
%0 Journal Article
%A N. A. Davydov
%A G. A. Mikhalin
%T Kernels of bounded sequences
%J Matematičeskie zametki
%D 1978
%P 537-550
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a5/
%G ru
%F MZM_1978_23_4_a5
N. A. Davydov; G. A. Mikhalin. Kernels of bounded sequences. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 537-550. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a5/