Lower bounds for the modulus of the logarithmic derivative of a~polynomial
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 527-535
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates are given for the measure of a section of an arbitrary straight line of the set
$$
E_\delta=\{z:|P'(z)/(nP(z))|\le\delta\}\quad(\delta>0),
$$
where $P(z)$ is a polynomial of degree $n$.
THEOREM. {\em Suppose $P(x)=(x-x_1)\dots(x-x_n)$ is a polynomial with real zeros. Then, for any $\delta>0$, on any interval $a\le x\le b$, containing all of the $x_k$ $(k=1,2,\dots,n)$, outside an exceptional set $E_\delta\subset[a,b]$ such that
$$
\operatorname{mes}E_\delta\le(\sqrt{1+\delta^2(b-a)^2}-1)/\delta,
$$
we have the inequality}
$$
|P'(x)/(nP(x))|>\delta.
$$ A similar estimate is given for polynomials whose roots lie either in $\operatorname{Im}z\ge0$ or in $\operatorname{Im}z\le0$.
@article{MZM_1978_23_4_a4,
author = {N. V. Govorov and Yu. P. Lapenko},
title = {Lower bounds for the modulus of the logarithmic derivative of a~polynomial},
journal = {Matemati\v{c}eskie zametki},
pages = {527--535},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a4/}
}
TY - JOUR AU - N. V. Govorov AU - Yu. P. Lapenko TI - Lower bounds for the modulus of the logarithmic derivative of a~polynomial JO - Matematičeskie zametki PY - 1978 SP - 527 EP - 535 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a4/ LA - ru ID - MZM_1978_23_4_a4 ER -
N. V. Govorov; Yu. P. Lapenko. Lower bounds for the modulus of the logarithmic derivative of a~polynomial. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 527-535. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a4/