Lower bounds for the modulus of the logarithmic derivative of a~polynomial
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 527-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates are given for the measure of a section of an arbitrary straight line of the set $$ E_\delta=\{z:|P'(z)/(nP(z))|\le\delta\}\quad(\delta>0), $$ where $P(z)$ is a polynomial of degree $n$. THEOREM. {\em Suppose $P(x)=(x-x_1)\dots(x-x_n)$ is a polynomial with real zeros. Then, for any $\delta>0$, on any interval $a\le x\le b$, containing all of the $x_k$ $(k=1,2,\dots,n)$, outside an exceptional set $E_\delta\subset[a,b]$ such that $$ \operatorname{mes}E_\delta\le(\sqrt{1+\delta^2(b-a)^2}-1)/\delta, $$ we have the inequality} $$ |P'(x)/(nP(x))|>\delta. $$ A similar estimate is given for polynomials whose roots lie either in $\operatorname{Im}z\ge0$ or in $\operatorname{Im}z\le0$.
@article{MZM_1978_23_4_a4,
     author = {N. V. Govorov and Yu. P. Lapenko},
     title = {Lower bounds for the modulus of the logarithmic derivative of a~polynomial},
     journal = {Matemati\v{c}eskie zametki},
     pages = {527--535},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a4/}
}
TY  - JOUR
AU  - N. V. Govorov
AU  - Yu. P. Lapenko
TI  - Lower bounds for the modulus of the logarithmic derivative of a~polynomial
JO  - Matematičeskie zametki
PY  - 1978
SP  - 527
EP  - 535
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a4/
LA  - ru
ID  - MZM_1978_23_4_a4
ER  - 
%0 Journal Article
%A N. V. Govorov
%A Yu. P. Lapenko
%T Lower bounds for the modulus of the logarithmic derivative of a~polynomial
%J Matematičeskie zametki
%D 1978
%P 527-535
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a4/
%G ru
%F MZM_1978_23_4_a4
N. V. Govorov; Yu. P. Lapenko. Lower bounds for the modulus of the logarithmic derivative of a~polynomial. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 527-535. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a4/