Weak $*$ derived sets of sets of linear functionals
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 607-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Banach space $X$ the $w^*$–sequential closure operator in the adjoint space is, in general, not the topological closure operator. That is, it may happen that the $w^*$–sequential closure of a subspace $\Gamma$ of $X^*$ is not $w^*$–sequentially closed. The possible length of the chain of repeated $w^*$–sequential closures of a subspace of $X^*$ in dependence on the dimension of $X^{**}/X$ is investigated.
@article{MZM_1978_23_4_a12,
     author = {B. V. Godun},
     title = {Weak $*$ derived sets of sets of linear functionals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {607--616},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a12/}
}
TY  - JOUR
AU  - B. V. Godun
TI  - Weak $*$ derived sets of sets of linear functionals
JO  - Matematičeskie zametki
PY  - 1978
SP  - 607
EP  - 616
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a12/
LA  - ru
ID  - MZM_1978_23_4_a12
ER  - 
%0 Journal Article
%A B. V. Godun
%T Weak $*$ derived sets of sets of linear functionals
%J Matematičeskie zametki
%D 1978
%P 607-616
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a12/
%G ru
%F MZM_1978_23_4_a12
B. V. Godun. Weak $*$ derived sets of sets of linear functionals. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 607-616. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a12/