Series of univalent functions
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 593-600
Voir la notice de l'article provenant de la source Math-Net.Ru
We are considering a class $S$ of functions $F(z)$, $F(0)=0$, $F'(0)=1$ that are univalent and regular in the circle $|z|=1$, and its subclasses $S_h^*$ and $K$ of starlike functions of order $h$ and of convex functions respectively. Among others, we establish the following results:
If $F(z)\in S$ and $0\alpha1$, then
$$
\biggl|\frac{\alpha zF''(\alpha z)}{F'(\alpha z)}-\frac{zF''(z)}{F'(z)}+\frac2{1-r^2}-\frac2{1-\alpha^2r^2}\biggr|\le\frac{4r}{1-r^2}-\frac{4\alpha r}{1-\alpha^2r^2},\quad|z|=r
$$ If $F(z)\in S$ ($0\alpha1$) and
$$
1+\operatorname{Re}z_1F''(z_1)/F'(z_1)=\operatorname{Re}\alpha z_1F''(\alpha z_1)/F'(\alpha z_1)\quad(2-\sqrt3|z_1|=r1),
$$
then we obtain the domain of values of the point $\alpha z_1$.
@article{MZM_1978_23_4_a10,
author = {B. N. Rakhmanov},
title = {Series of univalent functions},
journal = {Matemati\v{c}eskie zametki},
pages = {593--600},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a10/}
}
B. N. Rakhmanov. Series of univalent functions. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 593-600. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a10/