A~mixed boundary-value problem for a~hyperbolic-parabolic equation
Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 389-400
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega$ be a bounded domain in the $n$-dimensional Euclidean space. In the cylindrical domain $Q_T=\Omega\times[0,T]$ we consider a hyperbolic-parabolic equation of the form
$$
Lu=k(x,t)u_{tt}+\sum_{i=1}^na_iu_{tx_i}-\sum_{i,j=1}^n\frac\partial{\partial x_i}(a_{ij}(x,t)u_{x_j})+\sum^n_{i=1}b_iu_{x_i}+au_t+cu=f(x,t),\eqno(1)
$$
where $k(x,t)\ge0$, $a_{ij}=a_{ji}$, $\nu|\xi|^2\le a_{ij}\xi_i\xi_j\le\mu|\xi|^2$, $\forall\,\xi\in\mathbf R^n$, $\nu>0$.
The classical and the “modified” mixed boundary-value problems for Eq. (1) are studied. Under certain conditions on the coefficients of the equation it is proved that these problems have unique solution in the Sobolev spaces $W_2^1(Q_T)$ и $W_2^2(Q_T)$.
@article{MZM_1978_23_3_a6,
author = {I. E. Egorov},
title = {A~mixed boundary-value problem for a~hyperbolic-parabolic equation},
journal = {Matemati\v{c}eskie zametki},
pages = {389--400},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a6/}
}
I. E. Egorov. A~mixed boundary-value problem for a~hyperbolic-parabolic equation. Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 389-400. http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a6/