A~spectral sequence associated with a~continuous map
Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 435-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

A spectral sequence is defined for a closed map of finite multiplicity which coincides with the Cartan-Grothendieck spectral sequence in the case of a map onto a quotient space by a finite group acting freely $[1,2]$. It is proved that the resolution by means of which the spectral sequence is defined can be described within the framework of the so-called theory of triples. A definition of this sequence is given for an arbitrary continuous map. It is shown that the spectral sequences of coverings are the spectral sequences of special continuous maps.
@article{MZM_1978_23_3_a11,
     author = {A. V. Zarelua},
     title = {A~spectral sequence associated with a~continuous map},
     journal = {Matemati\v{c}eskie zametki},
     pages = {435--446},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a11/}
}
TY  - JOUR
AU  - A. V. Zarelua
TI  - A~spectral sequence associated with a~continuous map
JO  - Matematičeskie zametki
PY  - 1978
SP  - 435
EP  - 446
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a11/
LA  - ru
ID  - MZM_1978_23_3_a11
ER  - 
%0 Journal Article
%A A. V. Zarelua
%T A~spectral sequence associated with a~continuous map
%J Matematičeskie zametki
%D 1978
%P 435-446
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a11/
%G ru
%F MZM_1978_23_3_a11
A. V. Zarelua. A~spectral sequence associated with a~continuous map. Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 435-446. http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a11/