An integral criterion for oscillation of linear differential equations of second order
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 249-252
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if for some $n>2$ the function $x^{1-n}A_n(x)$, where $A_n(x)$ is the $n$-th primitive of $a(x)$, is not bounded above, then the equation $y''+a(x)y=0$ oscillates.
@article{MZM_1978_23_2_a7,
author = {I. V. Kamenev},
title = {An integral criterion for oscillation of linear differential equations of second order},
journal = {Matemati\v{c}eskie zametki},
pages = {249--252},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a7/}
}
I. V. Kamenev. An integral criterion for oscillation of linear differential equations of second order. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 249-252. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a7/