An integral criterion for oscillation of linear differential equations of second order
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 249-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if for some $n>2$ the function $x^{1-n}A_n(x)$, where $A_n(x)$ is the $n$-th primitive of $a(x)$, is not bounded above, then the equation $y''+a(x)y=0$ oscillates.
@article{MZM_1978_23_2_a7,
     author = {I. V. Kamenev},
     title = {An integral criterion for oscillation of linear differential equations of second order},
     journal = {Matemati\v{c}eskie zametki},
     pages = {249--252},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a7/}
}
TY  - JOUR
AU  - I. V. Kamenev
TI  - An integral criterion for oscillation of linear differential equations of second order
JO  - Matematičeskie zametki
PY  - 1978
SP  - 249
EP  - 252
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a7/
LA  - ru
ID  - MZM_1978_23_2_a7
ER  - 
%0 Journal Article
%A I. V. Kamenev
%T An integral criterion for oscillation of linear differential equations of second order
%J Matematičeskie zametki
%D 1978
%P 249-252
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a7/
%G ru
%F MZM_1978_23_2_a7
I. V. Kamenev. An integral criterion for oscillation of linear differential equations of second order. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 249-252. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a7/