Algebraic polynomial bases of space $L_p$
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 223-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\varphi_n\}$ be a system, close to the orthonormal complete system $\{\chi_n\}$. An estimate is obtained for the deviation of the system $\{f_n\}$, obtained from $\{\varphi_n\}$ by Schmidt's method, from the system $\{\chi_n\}$. This estimate is used to show that, in any $L_p(-1,1)$, with $p\in(1,4/3]\cup[4,\infty)$, and for any $\lambda>\pi e/4=2,\!13\dots$, there exists an orthogonal algebraic system $\{P_n(x)\}_{n=0}^\infty$, forming a basis in $L_p$ and such that $\nu_n=\deg P_n(x)\le\lambda n$ for $n>n_0(p,\lambda)$.
@article{MZM_1978_23_2_a4,
     author = {Z. A. Chanturiya},
     title = {Algebraic polynomial bases of space $L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {223--230},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a4/}
}
TY  - JOUR
AU  - Z. A. Chanturiya
TI  - Algebraic polynomial bases of space $L_p$
JO  - Matematičeskie zametki
PY  - 1978
SP  - 223
EP  - 230
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a4/
LA  - ru
ID  - MZM_1978_23_2_a4
ER  - 
%0 Journal Article
%A Z. A. Chanturiya
%T Algebraic polynomial bases of space $L_p$
%J Matematičeskie zametki
%D 1978
%P 223-230
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a4/
%G ru
%F MZM_1978_23_2_a4
Z. A. Chanturiya. Algebraic polynomial bases of space $L_p$. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 223-230. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a4/