Universal measurability of the identity mapping of a~Banach space in certain topologies
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 305-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $X$ is a Banach space and $X'$ is its conjugate, then a subset $Y$ of $X'$ is called madmissible for $X$ if a) he topology $\sigma(X,Y)$ is Hausdorff, b) the identity embedding of ($X,\sigma(X,Y)$) into $X$ is universally measurable (Ref. Zh. Mat., 1975, 8B 75 8K). If $X$ is separable, then the existence of an $m$-admissible set is well known. In this note it is shown that there exist nonseparable $X$ having separable $m$-admissible sets. The properties of spaces with separable $m$-admissible sets are considered. It is proved, in particular, that a separable normalizing subset $Y$ of $X'$ is $m$-admissible for $X$ if and only if every $\sigma(X,Y)$-compact set is separable in $X$.
@article{MZM_1978_23_2_a14,
     author = {V. I. Rybakov},
     title = {Universal measurability of the identity mapping of {a~Banach} space in certain topologies},
     journal = {Matemati\v{c}eskie zametki},
     pages = {305--314},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a14/}
}
TY  - JOUR
AU  - V. I. Rybakov
TI  - Universal measurability of the identity mapping of a~Banach space in certain topologies
JO  - Matematičeskie zametki
PY  - 1978
SP  - 305
EP  - 314
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a14/
LA  - ru
ID  - MZM_1978_23_2_a14
ER  - 
%0 Journal Article
%A V. I. Rybakov
%T Universal measurability of the identity mapping of a~Banach space in certain topologies
%J Matematičeskie zametki
%D 1978
%P 305-314
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a14/
%G ru
%F MZM_1978_23_2_a14
V. I. Rybakov. Universal measurability of the identity mapping of a~Banach space in certain topologies. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 305-314. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a14/