A~geometric property of extremal surfaces
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 177-181
Voir la notice de l'article provenant de la source Math-Net.Ru
Let the surface $\Gamma\in R^3$ be defined by the equation $z=f(x,y)$, where $f(x,y)$ is a function 3 times continuously differentiable in $R^2$. It is proved that if the total (Gaussian) curvature of the surface $\Gamma$ is nonzero almost everywhere on $\Gamma$ (in the sense of Lebesgue measure in $R^2$), then $\Gamma$ is extremal, i.e., for almost all $(x,y)\in R^2$ the inequality
$$
\max(\|qx\|,\|qy\|,\|qf(x,y)\|)>q^{-1/3-\varepsilon},
$$
holds for all integral $q\ge q_0(f)$, where $\|x\|$ is the distance from the real number $x$ to the nearest integer and $\varepsilon>0$ is arbitrarily small.
@article{MZM_1978_23_2_a0,
author = {\'E. I. Kovalevskaya},
title = {A~geometric property of extremal surfaces},
journal = {Matemati\v{c}eskie zametki},
pages = {177--181},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a0/}
}
É. I. Kovalevskaya. A~geometric property of extremal surfaces. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 177-181. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a0/