A~geometric property of extremal surfaces
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 177-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the surface $\Gamma\in R^3$ be defined by the equation $z=f(x,y)$, where $f(x,y)$ is a function 3 times continuously differentiable in $R^2$. It is proved that if the total (Gaussian) curvature of the surface $\Gamma$ is nonzero almost everywhere on $\Gamma$ (in the sense of Lebesgue measure in $R^2$), then $\Gamma$ is extremal, i.e., for almost all $(x,y)\in R^2$ the inequality $$ \max(\|qx\|,\|qy\|,\|qf(x,y)\|)>q^{-1/3-\varepsilon}, $$ holds for all integral $q\ge q_0(f)$, where $\|x\|$ is the distance from the real number $x$ to the nearest integer and $\varepsilon>0$ is arbitrarily small.
@article{MZM_1978_23_2_a0,
     author = {\'E. I. Kovalevskaya},
     title = {A~geometric property of extremal surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {177--181},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a0/}
}
TY  - JOUR
AU  - É. I. Kovalevskaya
TI  - A~geometric property of extremal surfaces
JO  - Matematičeskie zametki
PY  - 1978
SP  - 177
EP  - 181
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a0/
LA  - ru
ID  - MZM_1978_23_2_a0
ER  - 
%0 Journal Article
%A É. I. Kovalevskaya
%T A~geometric property of extremal surfaces
%J Matematičeskie zametki
%D 1978
%P 177-181
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a0/
%G ru
%F MZM_1978_23_2_a0
É. I. Kovalevskaya. A~geometric property of extremal surfaces. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 177-181. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a0/