Measurable Hermitian-positive functions
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 79-91
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak B^c_a$, $\mathfrak B_a^m$, $\mathfrak B_a^s$ ($0$), respectively, denote the sets of continuous, measurable, and almost-everywhere vanishing functions $f(х)$ ($-a$; $f(0)>0$). The theorem is proved that for every $f\in\mathfrak B_a^m\setminus(\mathfrak B_a^c\cup\mathfrak B_a^s)$ there correspond $f_c\in\mathfrak B_a^c$ and $f_s\in\mathfrak B_a^s$, such that $f=f_c+f_s$ Some unsolved problems related to this theorem are formulated.
@article{MZM_1978_23_1_a8,
author = {M. G. Krein},
title = {Measurable {Hermitian-positive} functions},
journal = {Matemati\v{c}eskie zametki},
pages = {79--91},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a8/}
}
M. G. Krein. Measurable Hermitian-positive functions. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 79-91. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a8/