Measurable Hermitian-positive functions
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 79-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak B^c_a$, $\mathfrak B_a^m$, $\mathfrak B_a^s$ ($0$), respectively, denote the sets of continuous, measurable, and almost-everywhere vanishing functions $f(х)$ ($-a$; $f(0)>0$). The theorem is proved that for every $f\in\mathfrak B_a^m\setminus(\mathfrak B_a^c\cup\mathfrak B_a^s)$ there correspond $f_c\in\mathfrak B_a^c$ and $f_s\in\mathfrak B_a^s$, such that $f=f_c+f_s$ Some unsolved problems related to this theorem are formulated.
@article{MZM_1978_23_1_a8,
     author = {M. G. Krein},
     title = {Measurable {Hermitian-positive} functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a8/}
}
TY  - JOUR
AU  - M. G. Krein
TI  - Measurable Hermitian-positive functions
JO  - Matematičeskie zametki
PY  - 1978
SP  - 79
EP  - 91
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a8/
LA  - ru
ID  - MZM_1978_23_1_a8
ER  - 
%0 Journal Article
%A M. G. Krein
%T Measurable Hermitian-positive functions
%J Matematičeskie zametki
%D 1978
%P 79-91
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a8/
%G ru
%F MZM_1978_23_1_a8
M. G. Krein. Measurable Hermitian-positive functions. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 79-91. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a8/