Kernels of sequences of complex numbers and their regular transformations
Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 815-823
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that $\bigcap\limits_xU(x,C\varlimsup\limits_{n\to\infty}|x-x_n|)$, where $U(a,r)$ is the ball of radius $r$ with center at the pointa, is the smallest closed convex set containing the kernel of any sequence $\{y_n\}$ obtained from the sequence $\{x_n\}$ by means of a regular transformation $(c_{nk})$, satisfying the condition $\varlimsup\limits_{n\to\infty}\sum_{k=1}^\infty|c_{kn}|=C\ge1$, where $x$, $x_n$, $c_{nk}$, ($n,k=1,2,\dots$) are complex numbers.
@article{MZM_1977_22_6_a3,
author = {A. A. Shcherbakov},
title = {Kernels of sequences of complex numbers and their regular transformations},
journal = {Matemati\v{c}eskie zametki},
pages = {815--823},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a3/}
}
A. A. Shcherbakov. Kernels of sequences of complex numbers and their regular transformations. Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 815-823. http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a3/