Kernels of sequences of complex numbers and their regular transformations
Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 815-823.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that $\bigcap\limits_xU(x,C\varlimsup\limits_{n\to\infty}|x-x_n|)$, where $U(a,r)$ is the ball of radius $r$ with center at the pointa, is the smallest closed convex set containing the kernel of any sequence $\{y_n\}$ obtained from the sequence $\{x_n\}$ by means of a regular transformation $(c_{nk})$, satisfying the condition $\varlimsup\limits_{n\to\infty}\sum_{k=1}^\infty|c_{kn}|=C\ge1$, where $x$, $x_n$, $c_{nk}$, ($n,k=1,2,\dots$) are complex numbers.
@article{MZM_1977_22_6_a3,
     author = {A. A. Shcherbakov},
     title = {Kernels of sequences of complex numbers and their regular transformations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {815--823},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a3/}
}
TY  - JOUR
AU  - A. A. Shcherbakov
TI  - Kernels of sequences of complex numbers and their regular transformations
JO  - Matematičeskie zametki
PY  - 1977
SP  - 815
EP  - 823
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a3/
LA  - ru
ID  - MZM_1977_22_6_a3
ER  - 
%0 Journal Article
%A A. A. Shcherbakov
%T Kernels of sequences of complex numbers and their regular transformations
%J Matematičeskie zametki
%D 1977
%P 815-823
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a3/
%G ru
%F MZM_1977_22_6_a3
A. A. Shcherbakov. Kernels of sequences of complex numbers and their regular transformations. Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 815-823. http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a3/