Diameters of a~class of smooth functions in the space $L_2$
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 671-678.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class $V_\psi$, consisting of the smooth functions $f(t)$, $0\le t\le1$, satisfying the condition $\int_0^1\psi[f^{(r)}(t)]\,dt\le1$, where the function $\psi(t)$ is nonnegative and $r$ is a natural number, is studied. Under certain restrictions on the function $\psi(t)$ ensuring the compactness of the class $V_\psi$, the order of decrease of the Kolmogorov diameters $d_n(V_\psi)$ is computed. The analogous problem for the case $r=1$ is solved also for functions of several variables.
@article{MZM_1977_22_5_a7,
     author = {R. S. Ismagilov and Kh. Nasyrova},
     title = {Diameters of a~class of smooth functions in the space $L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {671--678},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a7/}
}
TY  - JOUR
AU  - R. S. Ismagilov
AU  - Kh. Nasyrova
TI  - Diameters of a~class of smooth functions in the space $L_2$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 671
EP  - 678
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a7/
LA  - ru
ID  - MZM_1977_22_5_a7
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%A Kh. Nasyrova
%T Diameters of a~class of smooth functions in the space $L_2$
%J Matematičeskie zametki
%D 1977
%P 671-678
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a7/
%G ru
%F MZM_1977_22_5_a7
R. S. Ismagilov; Kh. Nasyrova. Diameters of a~class of smooth functions in the space $L_2$. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 671-678. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a7/