Borsuk's problem
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 621-631.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Borsuk number of a bounded set $F$ is the smallest natural number $k$ such that $F$ can be represented as a union of $k$ sets, the diameter of each of which is less than $\operatorname{diam}F$. In this paper we solve the problem of finding the Borsuk number of any bounded set in an arbitrary two-dimensional normed space (the solution is given in terms of the enlargement of a set to a figure of constant width). We indicate spaces for which the solution of Borsuk's problem has the same form as in the Euclidean plane.
@article{MZM_1977_22_5_a2,
     author = {V. G. Boltyanskii and V. P. Soltan},
     title = {Borsuk's problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {621--631},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a2/}
}
TY  - JOUR
AU  - V. G. Boltyanskii
AU  - V. P. Soltan
TI  - Borsuk's problem
JO  - Matematičeskie zametki
PY  - 1977
SP  - 621
EP  - 631
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a2/
LA  - ru
ID  - MZM_1977_22_5_a2
ER  - 
%0 Journal Article
%A V. G. Boltyanskii
%A V. P. Soltan
%T Borsuk's problem
%J Matematičeskie zametki
%D 1977
%P 621-631
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a2/
%G ru
%F MZM_1977_22_5_a2
V. G. Boltyanskii; V. P. Soltan. Borsuk's problem. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 621-631. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a2/